On the Second Cohomology of Kähler Groups
Carlson and Toledo conjectured that if an infinite group Γ is the fundamental group of a compact Kähler manifold, then virtually . We assume that Γ admits an unbounded reductive rigid linear representation. This representation necessarily comes from a complex variation of Hodge structure ( -VHS) on...
Gespeichert in:
Veröffentlicht in: | Geometric and functional analysis 2011-04, Vol.21 (2), p.419-442 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Carlson and Toledo conjectured that if an infinite group Γ is the fundamental group of a compact Kähler manifold, then virtually
. We assume that Γ admits an unbounded reductive rigid linear representation. This representation necessarily comes from a complex variation of Hodge structure (
-VHS) on the Kähler manifold. We prove the conjecture under some assumption on the
-VHS. We also study some related geometric/topological properties of period domains associated to such a
-VHS. |
---|---|
ISSN: | 1016-443X 1420-8970 |
DOI: | 10.1007/s00039-011-0114-y |