On the Second Cohomology of Kähler Groups

Carlson and Toledo conjectured that if an infinite group Γ is the fundamental group of a compact Kähler manifold, then virtually . We assume that Γ admits an unbounded reductive rigid linear representation. This representation necessarily comes from a complex variation of Hodge structure ( -VHS) on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometric and functional analysis 2011-04, Vol.21 (2), p.419-442
Hauptverfasser: Klingler, Bruno, Koziarz, Vincent, Maubon, Julien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Carlson and Toledo conjectured that if an infinite group Γ is the fundamental group of a compact Kähler manifold, then virtually . We assume that Γ admits an unbounded reductive rigid linear representation. This representation necessarily comes from a complex variation of Hodge structure ( -VHS) on the Kähler manifold. We prove the conjecture under some assumption on the -VHS. We also study some related geometric/topological properties of period domains associated to such a -VHS.
ISSN:1016-443X
1420-8970
DOI:10.1007/s00039-011-0114-y