Nanoparticles Self-Assembly Driven by High Affinity Repeat Protein Pairing

Proteins are the most specific yet versatile biological self-assembling agents with a rich chemistry. Nevertheless, the design of new proteins with recognition capacities is still in its infancy and has seldom been exploited for the self-assembly of functional inorganic nanoparticles. Here, we repor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2016-03, Vol.10 (3), p.3176-3185
Hauptverfasser: Gurunatha, Kargal L, Fournier, Agathe C, Urvoas, Agathe, Valerio-Lepiniec, Marie, Marchi, Valérie, Minard, Philippe, Dujardin, Erik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Proteins are the most specific yet versatile biological self-assembling agents with a rich chemistry. Nevertheless, the design of new proteins with recognition capacities is still in its infancy and has seldom been exploited for the self-assembly of functional inorganic nanoparticles. Here, we report on the protein-directed assembly of gold nanoparticles using purpose-designed artificial repeat proteins having a rigid but modular 3D architecture. αRep protein pairs are selected for their high mutual affinity from a library of 109 variants. Their conjugation onto gold nanoparticles drives the massive colloidal assembly of free-standing, one-particle thick films. When the average number of proteins per nanoparticle is lowered, the extent of self-assembly is limited to oligomeric particle clusters. Finally, we demonstrate that the aggregates are reversibly disassembled by an excess of one free protein. Our approach could be optimized for applications in biosensing, cell targeting, or functional nanomaterials engineering.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.5b04531