The heat kernel of a Schrödinger operator with inverse square potential

We consider the Schrödinger operator H=−Δ+V(|x|) with radial potential V which may have singularity at 0 and a quadratic decay at infinity. First, we study the structure of positive harmonic functions of H and give their precise behavior. Second, under quite general conditions we prove an upper boun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the London Mathematical Society 2017-08, Vol.115 (2), p.381-410
Hauptverfasser: Ishige, Kazuhiro, Kabeya, Yoshitsugu, Ouhabaz, El Maati
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the Schrödinger operator H=−Δ+V(|x|) with radial potential V which may have singularity at 0 and a quadratic decay at infinity. First, we study the structure of positive harmonic functions of H and give their precise behavior. Second, under quite general conditions we prove an upper bound for the correspond heat kernel p(x,y,t) of the type 00, where U is a positive harmonic function of H. Third, if U2 is an A2 weight on RN, then we prove a lower bound of a similar type.
ISSN:0024-6115
1460-244X
DOI:10.1112/plms.12041