The heat kernel of a Schrödinger operator with inverse square potential
We consider the Schrödinger operator H=−Δ+V(|x|) with radial potential V which may have singularity at 0 and a quadratic decay at infinity. First, we study the structure of positive harmonic functions of H and give their precise behavior. Second, under quite general conditions we prove an upper boun...
Gespeichert in:
Veröffentlicht in: | Proceedings of the London Mathematical Society 2017-08, Vol.115 (2), p.381-410 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the Schrödinger operator H=−Δ+V(|x|) with radial potential V which may have singularity at 0 and a quadratic decay at infinity. First, we study the structure of positive harmonic functions of H and give their precise behavior. Second, under quite general conditions we prove an upper bound for the correspond heat kernel p(x,y,t) of the type
00, where U is a positive harmonic function of H. Third, if U2 is an A2 weight on RN, then we prove a lower bound of a similar type. |
---|---|
ISSN: | 0024-6115 1460-244X |
DOI: | 10.1112/plms.12041 |