White biotechnology: State of the art strategies for the development of biocatalysts for biorefining
White biotechnology is a term that is now often used to describe the implementation of biotechnology in the industrial sphere. Biocatalysts (enzymes and microorganisms) are the key tools of white biotechnology, which is considered to be one of the key technological drivers for the growing bioeconomy...
Gespeichert in:
Veröffentlicht in: | Biotechnology advances 2015-12, Vol.33 (8), p.1653-1670 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | White biotechnology is a term that is now often used to describe the implementation of biotechnology in the industrial sphere. Biocatalysts (enzymes and microorganisms) are the key tools of white biotechnology, which is considered to be one of the key technological drivers for the growing bioeconomy. Biocatalysts are already present in sectors such as the chemical and agro-food industries, and are used to manufacture products as diverse as antibiotics, paper pulp, bread or advanced polymers. This review proposes an original and global overview of highly complementary fields of biotechnology at both enzyme and microorganism level. A certain number of state of the art approaches that are now being used to improve the industrial fitness of biocatalysts particularly focused on the biorefinery sector are presented. The first part deals with the technologies that underpin the development of industrial biocatalysts, notably the discovery of new enzymes and enzyme improvement using directed evolution techniques. The second part describes the toolbox available by the cell engineer to shape the metabolism of microorganisms. And finally the last part focuses on the ‘omic’ technologies that are vital for understanding and guide microbial engineering toward more efficient microbial biocatalysts. Altogether, these techniques and strategies will undoubtedly help to achieve the challenging task of developing consolidated bioprocessing (i.e. CBP) readily available for industrial purpose.
•Gives an overview of current approaches used in white biotechnology for biorefinery•Provides knowledge on enzyme discovery and engineering for biomass deconstruction•Covers the topics of strain engineering to manufacture tailor made-microorganism•Points out the potentialities of system biology and ‘-omic’ approaches•Represents the most updated information and technological perspective on the topic. |
---|---|
ISSN: | 0734-9750 1873-1899 |
DOI: | 10.1016/j.biotechadv.2015.08.004 |