Upper functions for positive random functionals. I. General setting and Gaussian random functions
In this paper we are interested in finding upper functions for a collection of real-valued random variables {Ψ( χ θ ), θ ∈ Θ}. Here { χ θ , θ ∈ Θ} is a family of continuous random mappings, Ψ is a given sub-additive positive functional and Θ is a totally bounded subset of a metric space. We seek a n...
Gespeichert in:
Veröffentlicht in: | Mathematical methods of statistics 2013, Vol.22 (1), p.1-27 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we are interested in finding upper functions for a collection of real-valued random variables {Ψ(
χ
θ
),
θ
∈ Θ}. Here {
χ
θ
, θ ∈ Θ} is a family of continuous random mappings, Ψ is a given sub-additive positive functional and Θ is a totally bounded subset of a metric space. We seek a nonrandom function
U
: Θ → ℝ
+
such that sup
θ
∈Θ
{Ψ(
χ
θ
) −
U
(
θ
)}
+
is “small” with prescribed probability. We apply the results obtained in the general setting to the variety of problems related to Gaussian random functions and empirical processes. |
---|---|
ISSN: | 1066-5307 1934-8045 |
DOI: | 10.3103/S1066530713010018 |