Upper functions for positive random functionals. I. General setting and Gaussian random functions

In this paper we are interested in finding upper functions for a collection of real-valued random variables {Ψ( χ θ ), θ ∈ Θ}. Here { χ θ , θ ∈ Θ} is a family of continuous random mappings, Ψ is a given sub-additive positive functional and Θ is a totally bounded subset of a metric space. We seek a n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods of statistics 2013, Vol.22 (1), p.1-27
1. Verfasser: Lepski, O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we are interested in finding upper functions for a collection of real-valued random variables {Ψ( χ θ ), θ ∈ Θ}. Here { χ θ , θ ∈ Θ} is a family of continuous random mappings, Ψ is a given sub-additive positive functional and Θ is a totally bounded subset of a metric space. We seek a nonrandom function U : Θ → ℝ + such that sup θ ∈Θ {Ψ( χ θ ) − U ( θ )} + is “small” with prescribed probability. We apply the results obtained in the general setting to the variety of problems related to Gaussian random functions and empirical processes.
ISSN:1066-5307
1934-8045
DOI:10.3103/S1066530713010018