Some knots in S^1 x S^2 with lens space surgeries

We propose a classification of knots in S^1 x S^2 that admit a longitudinal surgery to a lens space. Any lens space obtainable by longitudinal surgery on some knots in S^1 x S^2 may be obtained from a Berge-Gabai knot in a Heegaard solid torus of S^1 x S^2, as observed by Rasmussen. We show that the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in analysis and geometry 2016, Vol.24 (3), p.431-470
Hauptverfasser: Baker, Kenneth L., Buck, Dorothy, Lecuona, Ana G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a classification of knots in S^1 x S^2 that admit a longitudinal surgery to a lens space. Any lens space obtainable by longitudinal surgery on some knots in S^1 x S^2 may be obtained from a Berge-Gabai knot in a Heegaard solid torus of S^1 x S^2, as observed by Rasmussen. We show that there are yet two other families of knots: those that lie on the fiber of a genus one fibered knot and the `sporadic' knots. All these knots in S^1 x S^2 are both doubly primitive and spherical braids. This classification arose from generalizing Berge's list of doubly primitive knots in S^3, though we also examine how one might develop it using Lisca's embeddings of the intersection lattices of rational homology balls bounded by lens spaces as a guide. We conjecture that our knots constitute a complete list of doubly primitive knots in S^1 x S^2 and reduce this conjecture to classifying the homology classes of knots in lens spaces admitting a longitudinal S^1 x S^2 surgery.
ISSN:1019-8385
DOI:10.4310/CAG.2016.v24.n3.a1