Kähler groups, real hyperbolic spaces and the Cremona group. With an appendix by S. Cantat
Generalizing a classical theorem of Carlson and Toledo, we prove that any Zariski dense isometric action of a Kähler group on the real hyperbolic space of dimension at least three factors through a homomorphism onto a cocompact discrete subgroup of PSL 2 (R). We also study actions of Kähler groups o...
Gespeichert in:
Veröffentlicht in: | Compositio mathematica 2012 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Generalizing a classical theorem of Carlson and Toledo, we prove that any Zariski dense isometric action of a Kähler group on the real hyperbolic space of dimension at least three factors through a homomorphism onto a cocompact discrete subgroup of PSL 2 (R). We also study actions of Kähler groups on infinite-dimensional real hyperbolic spaces, describe some exotic actions of PSL 2 (R) on these spaces, and give an application to the study of the Cremona group. |
---|---|
ISSN: | 0010-437X 1570-5846 |
DOI: | 10.1112/S0010437X11007068 |