Kähler groups, real hyperbolic spaces and the Cremona group. With an appendix by S. Cantat

Generalizing a classical theorem of Carlson and Toledo, we prove that any Zariski dense isometric action of a Kähler group on the real hyperbolic space of dimension at least three factors through a homomorphism onto a cocompact discrete subgroup of PSL 2 (R). We also study actions of Kähler groups o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositio mathematica 2012
Hauptverfasser: Delzant, Thomas, Py, Pierre, Cantat, Serge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Generalizing a classical theorem of Carlson and Toledo, we prove that any Zariski dense isometric action of a Kähler group on the real hyperbolic space of dimension at least three factors through a homomorphism onto a cocompact discrete subgroup of PSL 2 (R). We also study actions of Kähler groups on infinite-dimensional real hyperbolic spaces, describe some exotic actions of PSL 2 (R) on these spaces, and give an application to the study of the Cremona group.
ISSN:0010-437X
1570-5846
DOI:10.1112/S0010437X11007068