On the representation of L-M algebra by intuitionistic fuzzy subsets
In this paper we introduce the notions of intuitionistic weak alpha-cut and untuitionistic strong alpha-cut of intuitionistic fuzzy subsets of a universe X. These notions lead us to show that the set IF(X) of all intuitionistic fuzzy subsets on a universe X can be equipped with a structure of involu...
Gespeichert in:
Veröffentlicht in: | ARIMA 2006-10, Vol.4, 2006, p.72-85 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we introduce the notions of intuitionistic weak alpha-cut and untuitionistic strong alpha-cut of intuitionistic fuzzy subsets of a universe X. These notions lead us to show that the set IF(X) of all intuitionistic fuzzy subsets on a universe X can be equipped with a structure of involutive theta-valued Lukasiewicz-Moisil algebra. Conversely, we show that every involutive theta-valued Lukasiewicz-Moisil algebra can be embedded into an algebra of intuitionistic fuzzy subsets.
Dans ce travail nous introduisons les notions de alpha-coupes et de alpha-coupes strictes d'un ensemble flou intuitionsiste d'un référentiel X. A l'aide de ces notions, nous montrons que l'ensemble IF(X) des sous-ensembles flous intuitionistes d'un référentiel X admet une structure d'algèbre de Moisil-Lukasiewicz. theta-valente involutive. Réciproquement, nous montrons que toute algèbre de Moisil-Lukasiewicz theta-valente involutive se plonge dans une algèbre des sous-ensembles flous intuitionistes. |
---|---|
ISSN: | 1638-5713 1638-5713 |
DOI: | 10.46298/arima.1845 |