On the representation of L-M algebra by intuitionistic fuzzy subsets

In this paper we introduce the notions of intuitionistic weak alpha-cut and untuitionistic strong alpha-cut of intuitionistic fuzzy subsets of a universe X. These notions lead us to show that the set IF(X) of all intuitionistic fuzzy subsets on a universe X can be equipped with a structure of involu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ARIMA 2006-10, Vol.4, 2006, p.72-85
Hauptverfasser: Lemnaouar, Zedam, Abdelaziz, Amroune
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we introduce the notions of intuitionistic weak alpha-cut and untuitionistic strong alpha-cut of intuitionistic fuzzy subsets of a universe X. These notions lead us to show that the set IF(X) of all intuitionistic fuzzy subsets on a universe X can be equipped with a structure of involutive theta-valued Lukasiewicz-Moisil algebra. Conversely, we show that every involutive theta-valued Lukasiewicz-Moisil algebra can be embedded into an algebra of intuitionistic fuzzy subsets. Dans ce travail nous introduisons les notions de alpha-coupes et de alpha-coupes strictes d'un ensemble flou intuitionsiste d'un référentiel X. A l'aide de ces notions, nous montrons que l'ensemble IF(X) des sous-ensembles flous intuitionistes d'un référentiel X admet une structure d'algèbre de Moisil-Lukasiewicz. theta-valente involutive. Réciproquement, nous montrons que toute algèbre de Moisil-Lukasiewicz theta-valente involutive se plonge dans une algèbre des sous-ensembles flous intuitionistes.
ISSN:1638-5713
1638-5713
DOI:10.46298/arima.1845