L^p-tauberian theorems and L^p-rates for energy decay

We prove $L^p$-analogues of the classical tauberian theorem of Ingham and Karamata, and its variations giving rates of decay. These results are applied to derive $L^p$-decay of operator families arising in the study of the decay of energy for damped wave equations and local energy for wave equations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional analysis 2016-02, Vol.270 (3)
Hauptverfasser: Batty, Charles, Borichev, Alexander, Tomilov, Yuri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove $L^p$-analogues of the classical tauberian theorem of Ingham and Karamata, and its variations giving rates of decay. These results are applied to derive $L^p$-decay of operator families arising in the study of the decay of energy for damped wave equations and local energy for wave equations in exterior domains. By constructing some examples of critical behaviour we show that the $L^p$-rates of decay obtained in this way are best possible under our assumptions.
ISSN:0022-1236
1096-0783
DOI:10.1016/j.jfa.2015.12.003