Correlations between charge and heat currents in an interacting quantum dot
We consider an interacting quantum dot connected to two reservoirs driven at distinct voltage/temperature and we study the correlations between charge and heat currents first as a function of the applied voltage bias, and second as a function of the temperature gradient between the two reservoirs. T...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2015-03, Vol.592 (1), p.12140 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider an interacting quantum dot connected to two reservoirs driven at distinct voltage/temperature and we study the correlations between charge and heat currents first as a function of the applied voltage bias, and second as a function of the temperature gradient between the two reservoirs. The Coulomb interactions in the quantum dot are treated using the Hartree approximation and the dot occupation number is determined self-consistently. The correlators exhibit structures in their voltage dependency which are highly non-linear when the coupling between the dot and the reservoirs is weak, and their behavior with temperature is non-monotonous. Moreover the sign of heat cross-correlator can change contrary to what happens with the charge cross-correlator which is always negative. The presence of Coulomb interactions enlarges the domain of voltage in which the heat cross-correlator is negative. |
---|---|
ISSN: | 1742-6596 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/592/1/012140 |