Experimental investigation on the concentration and voltage effects on the characteristics of deposited magnesium–lanthanum powder

In this paper, magnesium–lanthanum powders were synthesized by an electrodeposition technique using an aqueous solution, based on magnesium chloride hexahydrate and lanthanum nitrate for different values of voltage and La weight percentage. A copper cathode plate and a tungsten thread anode were use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied geophysics 2015-06, Vol.119 (4), p.1327-1333
Hauptverfasser: Sahli, M., Chetehouna, K., Faubert, F., Bariki, C., Gascoin, N., Bellel, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, magnesium–lanthanum powders were synthesized by an electrodeposition technique using an aqueous solution, based on magnesium chloride hexahydrate and lanthanum nitrate for different values of voltage and La weight percentage. A copper cathode plate and a tungsten thread anode were used for the preparation of the Mg–La layers. The as-deposited powders were characterized by energy dispersive spectroscopy (EDS) to determine the chemical composition, scanning electron microscope to describe the morphology, X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectra in order to define the chemical structure. EDS analyses indicate the presence of three elements (Mg, La and O) in the different deposited layers, and the major one is O (51–74.2 at.%). The two other elements, Mg and La, are, respectively, ranked 2 and 3 in the different powders. Morphological description reveals the formation of heterogeneous chemical structures on the surfaces of specimens. They are characterized by aggregates with different sizes. The dark aggregates are associated with magnesium, and the bright ones are attributed to lanthanum. X-ray results showed the existence of two distinct phases in the obtained deposits which are magnesium hydroxide (Mg(OH) 2 ) and lanthanum hydroxide (La(OH) 3 ). FTIR analyses confirm the presence of the two phases identified in XRD diffractograms, and they can be exhibited by clear peaks. In the studied ranges of voltage and La weight percentage, their peak transmittances have non-monotonic behaviors. A design of experiments was used to determine the influence of these two processing parameters and their interaction on the products formation. The parameter effects were ranked as follow: The first was the voltage then the interaction between the two parameters and finally the La content.
ISSN:0947-8396
1672-7975
1432-0630
DOI:10.1007/s00339-015-9099-y