Particle system algorithm and chaos propagation related to non-conservative McKean type stochastic differential equations
We discuss numerical aspects related to a new class of NonLinear Stochastic Differential Equation (NLSDE) in the sense of McKean, which are supposed to represent non conservative nonlinear Partial Differential Equations (PDEs). We propose an original interacting particle system for which we discuss...
Gespeichert in:
Veröffentlicht in: | Stochastic partial differential equations : analysis and computations 2017-03, Vol.5 (1), p.1-37 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We discuss numerical aspects related to a new class of NonLinear Stochastic Differential Equation (NLSDE) in the sense of McKean, which are supposed to represent non conservative nonlinear Partial Differential Equations (PDEs). We propose an original interacting particle system for which we discuss the propagation of chaos. We consider a time-discretized approximation of this particle system to which we associate a random function which is proved to converge to a solution of a regularized version of a nonlinear PDE. |
---|---|
ISSN: | 2194-0401 2194-041X |
DOI: | 10.1007/s40072-016-0079-9 |