Probability of failure sensitivity with respect to decision variables

This note introduces a derivation of the sensitivities of a probability of failure with respect to decision variables. For instance, the gradient of the probability of failure with respect to deterministic design variables might be needed in RBDO. These sensitivities might also be useful for Uncerta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural and multidisciplinary optimization 2015-08, Vol.52 (2), p.375-381
Hauptverfasser: Lacaze, Sylvain, Brevault, Loïc, Missoum, Samy, Balesdent, Mathieu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This note introduces a derivation of the sensitivities of a probability of failure with respect to decision variables. For instance, the gradient of the probability of failure with respect to deterministic design variables might be needed in RBDO. These sensitivities might also be useful for Uncertainty-based Multidisciplinary Design Optimization. The difficulty stems from the dependence of the failure domain on variations of the decision variables. This dependence leads to a derivative of the indicator function in the form of a Dirac distribution in the expression of the sensitivities. Based on an approximation of the Dirac, an estimator of the sensitivities is analytically derived in the case of Crude Monte Carlo first and Subset Simulation. The choice of the Dirac approximation is discussed.
ISSN:1615-147X
1615-1488
DOI:10.1007/s00158-015-1232-1