Differentiation of fast and slow muscle fibers by bioimpedance

The differentiation of fast and slow muscle fibers in vivo still requires constraining equipment (ergometer, biopsy ...) and invasive techniques. These fibers conduct the electrical current differently. Therefore the aim of this study is to see if it is possible to differentiate quickly, by bioimped...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2010-04, Vol.224 (1), p.012086
Hauptverfasser: Moreno, M-V, Khider, N, Ribbe, E, Damez, J-L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The differentiation of fast and slow muscle fibers in vivo still requires constraining equipment (ergometer, biopsy ...) and invasive techniques. These fibers conduct the electrical current differently. Therefore the aim of this study is to see if it is possible to differentiate quickly, by bioimpedance, fast and slow fibers, and firstly muscles which are typical composed by slow or fast fibers. To do this, we used a multifrequency impedancemeter Z-Metrix® (BioparHom© Company, France). We collected the electrical characteristics (Longitudinal and Transversal, from 1 to 1000 kHz) for a population of 20 rats aged 70 days, on Soleus muscles (composed principally of slow fibers) and Extensor Digitroum Longus (EDL) muscles (composed principally of fast fibers). We compared the means of alpha (L/T), R (L/T) and X (L/T) with Wilcoxon tests. We obtained non significant differences between electrical data obtained on EDL and Soleus muscles, but we could see differences on graphics representation and with the example of one rat. Therefore, we can assume that differentiation, by bioimpedance, of muscles typed slow and fast fibers, could be possible.
ISSN:1742-6596
1742-6588
1742-6596
DOI:10.1088/1742-6596/224/1/012086