Spectrotemporal dynamics of a picosecond OPO based on chirped quasi-phase-matching
We report on the first experimental investigation of the spectral dynamics of a synchronously pumped optical parametric oscillator (OPO) by use of dispersive Fourier transformation. For standard pumping rates, we observe a reproducible steady-state pulse-to-pulse spectrum. However, at high pumping l...
Gespeichert in:
Veröffentlicht in: | Optics letters 2015-01, Vol.40 (2), p.280-283 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report on the first experimental investigation of the spectral dynamics of a synchronously pumped optical parametric oscillator (OPO) by use of dispersive Fourier transformation. For standard pumping rates, we observe a reproducible steady-state pulse-to-pulse spectrum. However, at high pumping levels, the OPO delivers pulse trains with nontrivial oscillatory spectral patterns. So as to benefit from a tailored broadband gain spectrum, the investigated OPO contains a chirped quasi-phase matching (QPM) nonlinear crystal. We explore the specific impacts of using such a remarkable parametric amplification medium where nonlinearly coupled frequencies vary with position. Depending on the QPM chirp rate sign, a red- or blue-shift of the emitted wavelength occurs when the OPO is switched on, leading to different spectral steady-states. These singular spectrotemporal dynamics are evidenced and explained for the first time. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.40.000280 |