Self-Organization of Light in Optical Media with Competing Nonlinearities

We study the propagation of light beams through optical media with competing nonlocal nonlinearities. We demonstrate that the nonlocality of competing focusing and defocusing nonlinearities gives rise to self-organization and stationary states with stable hexagonal intensity patterns, akin to transv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2016-04, Vol.116 (16), p.163902-163902, Article 163902
Hauptverfasser: Maucher, F, Pohl, T, Skupin, S, Krolikowski, W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the propagation of light beams through optical media with competing nonlocal nonlinearities. We demonstrate that the nonlocality of competing focusing and defocusing nonlinearities gives rise to self-organization and stationary states with stable hexagonal intensity patterns, akin to transverse crystals of light filaments. Signatures of this long-range ordering are shown to be observable in the propagation of light in optical waveguides and even in free space. We consider a specific form of the nonlinear response that arises in atomic vapor upon proper light coupling. Yet, the general phenomenon of self-organization is a generic consequence of competing nonlocal nonlinearities, and may, hence, also be observed in other settings.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.116.163902