Standardless Quantification of Heavy Elements by Electron Probe Microanalysis
Absolute Mα and Mβ X-ray intensities were measured for the elements Pt, Au, Pb, U, and Th by electron impact for energies ranging from 6 to 38 keV. Experimental data were obtained by measuring the X-ray intensity emitted from bulk samples with an electron microprobe using high-resolution wavelength-...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2015-08, Vol.87 (15), p.7779-7786 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Absolute Mα and Mβ X-ray intensities were measured for the elements Pt, Au, Pb, U, and Th by electron impact for energies ranging from 6 to 38 keV. Experimental data were obtained by measuring the X-ray intensity emitted from bulk samples with an electron microprobe using high-resolution wavelength-dispersive spectrometers. Recorded X-ray intensities were converted into absolute X-ray yields by evaluation of the detector efficiency and then compared with X-ray intensities calculated by means of Monte Carlo simulations. Simulated Mα and Mβ X-ray intensities were found to be in good agreement with the measurements, allowing their use in standardless quantification methods. A procedure and a software program were developed to accurately obtain virtual standard values. Standardless quantifications of Pb and U were tested on standards of PbS, PbTe, PbCl2, vanadinite, and UO2. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/acs.analchem.5b01443 |