A sensor-data-based denoising framework for hyperspectral images
Many denoising approaches extend image processing to a hyperspectral cube structure, but do not take into account a sensor model nor the format of the recording. We propose a denoising framework for hyperspectral images that uses sensor data to convert an acquisition to a representation facilitating...
Gespeichert in:
Veröffentlicht in: | Optics express 2015-02, Vol.23 (3), p.1938-1950 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1950 |
---|---|
container_issue | 3 |
container_start_page | 1938 |
container_title | Optics express |
container_volume | 23 |
creator | Deger, Ferdinand Mansouri, Alamin Pedersen, Marius Hardeberg, Jon Y Voisin, Yvon |
description | Many denoising approaches extend image processing to a hyperspectral cube structure, but do not take into account a sensor model nor the format of the recording. We propose a denoising framework for hyperspectral images that uses sensor data to convert an acquisition to a representation facilitating the noise-estimation, namely the photon-corrected image. This photon corrected image format accounts for the most common noise contributions and is spatially proportional to spectral radiance values. The subsequent denoising is based on an extended variational denoising model, which is suited for a Poisson distributed noise. A spatially and spectrally adaptive total variation regularisation term accounts the structural proposition of a hyperspectral image cube. We evaluate the approach on a synthetic dataset that guarantees a noise-free ground truth, and the best results are achieved when the dark current is taken into account. |
doi_str_mv | 10.1364/OE.23.001938 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01217266v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669835072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2788-77918dd2777e9a7d4c9c1ad4794864e38053a64aaf7f80aa0dcf7653dd43b1ad3</originalsourceid><addsrcrecordid>eNpN0M9LwzAUB_AgitPpzbP0qGBnfjVJb44xnTDYRc_hrUm3atvUZFP235vROTzlET583-OL0A3BI8IEf1xMR5SNMCY5UyfoguCcpxwrefpvHqDLED6i4TKX52hAM8UEFuICPY2TYNvgfGpgA-kSgjWJsa2rQtWuktJDY3-c_0xK55P1rrM-dLbYeKiTqoGVDVforIQ62OvDO0Tvz9O3ySydL15eJ-N5WlCpVCplTpQxVEppc5CGF3lBwMR7uBLcMoUzBoIDlLJUGACbopQiY8ZwtoyQDdF9n7uGWnc-Lvc77aDSs_Fc7_8woURSIb5JtHe97bz72tqw0U0VClvX0Fq3DZoIkSuWYUkjfehp4V0I3pbHbIL1vl-9mGrKdN9v5LeH5O2yseaI_wplv9h9c_I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669835072</pqid></control><display><type>article</type><title>A sensor-data-based denoising framework for hyperspectral images</title><source>DOAJ Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Deger, Ferdinand ; Mansouri, Alamin ; Pedersen, Marius ; Hardeberg, Jon Y ; Voisin, Yvon</creator><creatorcontrib>Deger, Ferdinand ; Mansouri, Alamin ; Pedersen, Marius ; Hardeberg, Jon Y ; Voisin, Yvon</creatorcontrib><description>Many denoising approaches extend image processing to a hyperspectral cube structure, but do not take into account a sensor model nor the format of the recording. We propose a denoising framework for hyperspectral images that uses sensor data to convert an acquisition to a representation facilitating the noise-estimation, namely the photon-corrected image. This photon corrected image format accounts for the most common noise contributions and is spatially proportional to spectral radiance values. The subsequent denoising is based on an extended variational denoising model, which is suited for a Poisson distributed noise. A spatially and spectrally adaptive total variation regularisation term accounts the structural proposition of a hyperspectral image cube. We evaluate the approach on a synthetic dataset that guarantees a noise-free ground truth, and the best results are achieved when the dark current is taken into account.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.23.001938</identifier><identifier>PMID: 25836066</identifier><language>eng</language><publisher>United States: Optical Society of America - OSA Publishing</publisher><subject>Computer Science ; Signal and Image Processing</subject><ispartof>Optics express, 2015-02, Vol.23 (3), p.1938-1950</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2788-77918dd2777e9a7d4c9c1ad4794864e38053a64aaf7f80aa0dcf7653dd43b1ad3</citedby><cites>FETCH-LOGICAL-c2788-77918dd2777e9a7d4c9c1ad4794864e38053a64aaf7f80aa0dcf7653dd43b1ad3</cites><orcidid>0000-0001-9054-3719</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,860,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25836066$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://u-bourgogne.hal.science/hal-01217266$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Deger, Ferdinand</creatorcontrib><creatorcontrib>Mansouri, Alamin</creatorcontrib><creatorcontrib>Pedersen, Marius</creatorcontrib><creatorcontrib>Hardeberg, Jon Y</creatorcontrib><creatorcontrib>Voisin, Yvon</creatorcontrib><title>A sensor-data-based denoising framework for hyperspectral images</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>Many denoising approaches extend image processing to a hyperspectral cube structure, but do not take into account a sensor model nor the format of the recording. We propose a denoising framework for hyperspectral images that uses sensor data to convert an acquisition to a representation facilitating the noise-estimation, namely the photon-corrected image. This photon corrected image format accounts for the most common noise contributions and is spatially proportional to spectral radiance values. The subsequent denoising is based on an extended variational denoising model, which is suited for a Poisson distributed noise. A spatially and spectrally adaptive total variation regularisation term accounts the structural proposition of a hyperspectral image cube. We evaluate the approach on a synthetic dataset that guarantees a noise-free ground truth, and the best results are achieved when the dark current is taken into account.</description><subject>Computer Science</subject><subject>Signal and Image Processing</subject><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpN0M9LwzAUB_AgitPpzbP0qGBnfjVJb44xnTDYRc_hrUm3atvUZFP235vROTzlET583-OL0A3BI8IEf1xMR5SNMCY5UyfoguCcpxwrefpvHqDLED6i4TKX52hAM8UEFuICPY2TYNvgfGpgA-kSgjWJsa2rQtWuktJDY3-c_0xK55P1rrM-dLbYeKiTqoGVDVforIQ62OvDO0Tvz9O3ySydL15eJ-N5WlCpVCplTpQxVEppc5CGF3lBwMR7uBLcMoUzBoIDlLJUGACbopQiY8ZwtoyQDdF9n7uGWnc-Lvc77aDSs_Fc7_8woURSIb5JtHe97bz72tqw0U0VClvX0Fq3DZoIkSuWYUkjfehp4V0I3pbHbIL1vl-9mGrKdN9v5LeH5O2yseaI_wplv9h9c_I</recordid><startdate>20150209</startdate><enddate>20150209</enddate><creator>Deger, Ferdinand</creator><creator>Mansouri, Alamin</creator><creator>Pedersen, Marius</creator><creator>Hardeberg, Jon Y</creator><creator>Voisin, Yvon</creator><general>Optical Society of America - OSA Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9054-3719</orcidid></search><sort><creationdate>20150209</creationdate><title>A sensor-data-based denoising framework for hyperspectral images</title><author>Deger, Ferdinand ; Mansouri, Alamin ; Pedersen, Marius ; Hardeberg, Jon Y ; Voisin, Yvon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2788-77918dd2777e9a7d4c9c1ad4794864e38053a64aaf7f80aa0dcf7653dd43b1ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computer Science</topic><topic>Signal and Image Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deger, Ferdinand</creatorcontrib><creatorcontrib>Mansouri, Alamin</creatorcontrib><creatorcontrib>Pedersen, Marius</creatorcontrib><creatorcontrib>Hardeberg, Jon Y</creatorcontrib><creatorcontrib>Voisin, Yvon</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deger, Ferdinand</au><au>Mansouri, Alamin</au><au>Pedersen, Marius</au><au>Hardeberg, Jon Y</au><au>Voisin, Yvon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A sensor-data-based denoising framework for hyperspectral images</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2015-02-09</date><risdate>2015</risdate><volume>23</volume><issue>3</issue><spage>1938</spage><epage>1950</epage><pages>1938-1950</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>Many denoising approaches extend image processing to a hyperspectral cube structure, but do not take into account a sensor model nor the format of the recording. We propose a denoising framework for hyperspectral images that uses sensor data to convert an acquisition to a representation facilitating the noise-estimation, namely the photon-corrected image. This photon corrected image format accounts for the most common noise contributions and is spatially proportional to spectral radiance values. The subsequent denoising is based on an extended variational denoising model, which is suited for a Poisson distributed noise. A spatially and spectrally adaptive total variation regularisation term accounts the structural proposition of a hyperspectral image cube. We evaluate the approach on a synthetic dataset that guarantees a noise-free ground truth, and the best results are achieved when the dark current is taken into account.</abstract><cop>United States</cop><pub>Optical Society of America - OSA Publishing</pub><pmid>25836066</pmid><doi>10.1364/OE.23.001938</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9054-3719</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1094-4087 |
ispartof | Optics express, 2015-02, Vol.23 (3), p.1938-1950 |
issn | 1094-4087 1094-4087 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01217266v1 |
source | DOAJ Directory of Open Access Journals; Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | Computer Science Signal and Image Processing |
title | A sensor-data-based denoising framework for hyperspectral images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A42%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20sensor-data-based%20denoising%20framework%20for%20hyperspectral%20images&rft.jtitle=Optics%20express&rft.au=Deger,%20Ferdinand&rft.date=2015-02-09&rft.volume=23&rft.issue=3&rft.spage=1938&rft.epage=1950&rft.pages=1938-1950&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.23.001938&rft_dat=%3Cproquest_hal_p%3E1669835072%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1669835072&rft_id=info:pmid/25836066&rfr_iscdi=true |