A sensor-data-based denoising framework for hyperspectral images

Many denoising approaches extend image processing to a hyperspectral cube structure, but do not take into account a sensor model nor the format of the recording. We propose a denoising framework for hyperspectral images that uses sensor data to convert an acquisition to a representation facilitating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2015-02, Vol.23 (3), p.1938-1950
Hauptverfasser: Deger, Ferdinand, Mansouri, Alamin, Pedersen, Marius, Hardeberg, Jon Y, Voisin, Yvon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1950
container_issue 3
container_start_page 1938
container_title Optics express
container_volume 23
creator Deger, Ferdinand
Mansouri, Alamin
Pedersen, Marius
Hardeberg, Jon Y
Voisin, Yvon
description Many denoising approaches extend image processing to a hyperspectral cube structure, but do not take into account a sensor model nor the format of the recording. We propose a denoising framework for hyperspectral images that uses sensor data to convert an acquisition to a representation facilitating the noise-estimation, namely the photon-corrected image. This photon corrected image format accounts for the most common noise contributions and is spatially proportional to spectral radiance values. The subsequent denoising is based on an extended variational denoising model, which is suited for a Poisson distributed noise. A spatially and spectrally adaptive total variation regularisation term accounts the structural proposition of a hyperspectral image cube. We evaluate the approach on a synthetic dataset that guarantees a noise-free ground truth, and the best results are achieved when the dark current is taken into account.
doi_str_mv 10.1364/OE.23.001938
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01217266v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669835072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2788-77918dd2777e9a7d4c9c1ad4794864e38053a64aaf7f80aa0dcf7653dd43b1ad3</originalsourceid><addsrcrecordid>eNpN0M9LwzAUB_AgitPpzbP0qGBnfjVJb44xnTDYRc_hrUm3atvUZFP235vROTzlET583-OL0A3BI8IEf1xMR5SNMCY5UyfoguCcpxwrefpvHqDLED6i4TKX52hAM8UEFuICPY2TYNvgfGpgA-kSgjWJsa2rQtWuktJDY3-c_0xK55P1rrM-dLbYeKiTqoGVDVforIQ62OvDO0Tvz9O3ySydL15eJ-N5WlCpVCplTpQxVEppc5CGF3lBwMR7uBLcMoUzBoIDlLJUGACbopQiY8ZwtoyQDdF9n7uGWnc-Lvc77aDSs_Fc7_8woURSIb5JtHe97bz72tqw0U0VClvX0Fq3DZoIkSuWYUkjfehp4V0I3pbHbIL1vl-9mGrKdN9v5LeH5O2yseaI_wplv9h9c_I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669835072</pqid></control><display><type>article</type><title>A sensor-data-based denoising framework for hyperspectral images</title><source>DOAJ Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Deger, Ferdinand ; Mansouri, Alamin ; Pedersen, Marius ; Hardeberg, Jon Y ; Voisin, Yvon</creator><creatorcontrib>Deger, Ferdinand ; Mansouri, Alamin ; Pedersen, Marius ; Hardeberg, Jon Y ; Voisin, Yvon</creatorcontrib><description>Many denoising approaches extend image processing to a hyperspectral cube structure, but do not take into account a sensor model nor the format of the recording. We propose a denoising framework for hyperspectral images that uses sensor data to convert an acquisition to a representation facilitating the noise-estimation, namely the photon-corrected image. This photon corrected image format accounts for the most common noise contributions and is spatially proportional to spectral radiance values. The subsequent denoising is based on an extended variational denoising model, which is suited for a Poisson distributed noise. A spatially and spectrally adaptive total variation regularisation term accounts the structural proposition of a hyperspectral image cube. We evaluate the approach on a synthetic dataset that guarantees a noise-free ground truth, and the best results are achieved when the dark current is taken into account.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.23.001938</identifier><identifier>PMID: 25836066</identifier><language>eng</language><publisher>United States: Optical Society of America - OSA Publishing</publisher><subject>Computer Science ; Signal and Image Processing</subject><ispartof>Optics express, 2015-02, Vol.23 (3), p.1938-1950</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2788-77918dd2777e9a7d4c9c1ad4794864e38053a64aaf7f80aa0dcf7653dd43b1ad3</citedby><cites>FETCH-LOGICAL-c2788-77918dd2777e9a7d4c9c1ad4794864e38053a64aaf7f80aa0dcf7653dd43b1ad3</cites><orcidid>0000-0001-9054-3719</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,860,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25836066$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://u-bourgogne.hal.science/hal-01217266$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Deger, Ferdinand</creatorcontrib><creatorcontrib>Mansouri, Alamin</creatorcontrib><creatorcontrib>Pedersen, Marius</creatorcontrib><creatorcontrib>Hardeberg, Jon Y</creatorcontrib><creatorcontrib>Voisin, Yvon</creatorcontrib><title>A sensor-data-based denoising framework for hyperspectral images</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>Many denoising approaches extend image processing to a hyperspectral cube structure, but do not take into account a sensor model nor the format of the recording. We propose a denoising framework for hyperspectral images that uses sensor data to convert an acquisition to a representation facilitating the noise-estimation, namely the photon-corrected image. This photon corrected image format accounts for the most common noise contributions and is spatially proportional to spectral radiance values. The subsequent denoising is based on an extended variational denoising model, which is suited for a Poisson distributed noise. A spatially and spectrally adaptive total variation regularisation term accounts the structural proposition of a hyperspectral image cube. We evaluate the approach on a synthetic dataset that guarantees a noise-free ground truth, and the best results are achieved when the dark current is taken into account.</description><subject>Computer Science</subject><subject>Signal and Image Processing</subject><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpN0M9LwzAUB_AgitPpzbP0qGBnfjVJb44xnTDYRc_hrUm3atvUZFP235vROTzlET583-OL0A3BI8IEf1xMR5SNMCY5UyfoguCcpxwrefpvHqDLED6i4TKX52hAM8UEFuICPY2TYNvgfGpgA-kSgjWJsa2rQtWuktJDY3-c_0xK55P1rrM-dLbYeKiTqoGVDVforIQ62OvDO0Tvz9O3ySydL15eJ-N5WlCpVCplTpQxVEppc5CGF3lBwMR7uBLcMoUzBoIDlLJUGACbopQiY8ZwtoyQDdF9n7uGWnc-Lvc77aDSs_Fc7_8woURSIb5JtHe97bz72tqw0U0VClvX0Fq3DZoIkSuWYUkjfehp4V0I3pbHbIL1vl-9mGrKdN9v5LeH5O2yseaI_wplv9h9c_I</recordid><startdate>20150209</startdate><enddate>20150209</enddate><creator>Deger, Ferdinand</creator><creator>Mansouri, Alamin</creator><creator>Pedersen, Marius</creator><creator>Hardeberg, Jon Y</creator><creator>Voisin, Yvon</creator><general>Optical Society of America - OSA Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9054-3719</orcidid></search><sort><creationdate>20150209</creationdate><title>A sensor-data-based denoising framework for hyperspectral images</title><author>Deger, Ferdinand ; Mansouri, Alamin ; Pedersen, Marius ; Hardeberg, Jon Y ; Voisin, Yvon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2788-77918dd2777e9a7d4c9c1ad4794864e38053a64aaf7f80aa0dcf7653dd43b1ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computer Science</topic><topic>Signal and Image Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deger, Ferdinand</creatorcontrib><creatorcontrib>Mansouri, Alamin</creatorcontrib><creatorcontrib>Pedersen, Marius</creatorcontrib><creatorcontrib>Hardeberg, Jon Y</creatorcontrib><creatorcontrib>Voisin, Yvon</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deger, Ferdinand</au><au>Mansouri, Alamin</au><au>Pedersen, Marius</au><au>Hardeberg, Jon Y</au><au>Voisin, Yvon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A sensor-data-based denoising framework for hyperspectral images</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2015-02-09</date><risdate>2015</risdate><volume>23</volume><issue>3</issue><spage>1938</spage><epage>1950</epage><pages>1938-1950</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>Many denoising approaches extend image processing to a hyperspectral cube structure, but do not take into account a sensor model nor the format of the recording. We propose a denoising framework for hyperspectral images that uses sensor data to convert an acquisition to a representation facilitating the noise-estimation, namely the photon-corrected image. This photon corrected image format accounts for the most common noise contributions and is spatially proportional to spectral radiance values. The subsequent denoising is based on an extended variational denoising model, which is suited for a Poisson distributed noise. A spatially and spectrally adaptive total variation regularisation term accounts the structural proposition of a hyperspectral image cube. We evaluate the approach on a synthetic dataset that guarantees a noise-free ground truth, and the best results are achieved when the dark current is taken into account.</abstract><cop>United States</cop><pub>Optical Society of America - OSA Publishing</pub><pmid>25836066</pmid><doi>10.1364/OE.23.001938</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9054-3719</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Optics express, 2015-02, Vol.23 (3), p.1938-1950
issn 1094-4087
1094-4087
language eng
recordid cdi_hal_primary_oai_HAL_hal_01217266v1
source DOAJ Directory of Open Access Journals; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Computer Science
Signal and Image Processing
title A sensor-data-based denoising framework for hyperspectral images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A42%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20sensor-data-based%20denoising%20framework%20for%20hyperspectral%20images&rft.jtitle=Optics%20express&rft.au=Deger,%20Ferdinand&rft.date=2015-02-09&rft.volume=23&rft.issue=3&rft.spage=1938&rft.epage=1950&rft.pages=1938-1950&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.23.001938&rft_dat=%3Cproquest_hal_p%3E1669835072%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1669835072&rft_id=info:pmid/25836066&rfr_iscdi=true