A sensor-data-based denoising framework for hyperspectral images

Many denoising approaches extend image processing to a hyperspectral cube structure, but do not take into account a sensor model nor the format of the recording. We propose a denoising framework for hyperspectral images that uses sensor data to convert an acquisition to a representation facilitating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2015-02, Vol.23 (3), p.1938-1950
Hauptverfasser: Deger, Ferdinand, Mansouri, Alamin, Pedersen, Marius, Hardeberg, Jon Y, Voisin, Yvon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many denoising approaches extend image processing to a hyperspectral cube structure, but do not take into account a sensor model nor the format of the recording. We propose a denoising framework for hyperspectral images that uses sensor data to convert an acquisition to a representation facilitating the noise-estimation, namely the photon-corrected image. This photon corrected image format accounts for the most common noise contributions and is spatially proportional to spectral radiance values. The subsequent denoising is based on an extended variational denoising model, which is suited for a Poisson distributed noise. A spatially and spectrally adaptive total variation regularisation term accounts the structural proposition of a hyperspectral image cube. We evaluate the approach on a synthetic dataset that guarantees a noise-free ground truth, and the best results are achieved when the dark current is taken into account.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.23.001938