On Existence and Uniqueness of Solutions for Semilinear Fractional Wave Equations

Let Ω be a C 2 -bounded domain of R d , d = 2,3, and fix Q = (0, T )× Ω with T ∈ (0,+∞). In the present paper we consider a Dirichlet initial-boundary value problem associated to the semilinear fractional wave equation ∂ α t + Au = f b ( u ) in Q where 1 1. Moreover, we obtain an explicit dependence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fractional calculus & applied analysis 2017-02, Vol.20 (1), p.117-138
Hauptverfasser: Kian, Yavar, Yamamoto, Masahiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let Ω be a C 2 -bounded domain of R d , d = 2,3, and fix Q = (0, T )× Ω with T ∈ (0,+∞). In the present paper we consider a Dirichlet initial-boundary value problem associated to the semilinear fractional wave equation ∂ α t + Au = f b ( u ) in Q where 1 1. Moreover, we obtain an explicit dependence of the time of existence of solutions with respect to the initial data that allows longer time of existence for small initial data.
ISSN:1311-0454
1314-2224
DOI:10.1515/fca-2017-0006