Insights into the variability of nucleated amyloid polymerization by a minimalistic model of stochastic protein assembly

Self-assembly of proteins into amyloid aggregates is an important biological phenomenon associated with human diseases such as Alzheimer’s disease. Amyloid fibrils also have potential applications in nano-engineering of biomaterials. The kinetics of amyloid assembly show an exponential growth phase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2016-05, Vol.144 (17), p.175101-175101
Hauptverfasser: Eugène, Sarah, Xue, Wei-Feng, Robert, Philippe, Doumic, Marie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Self-assembly of proteins into amyloid aggregates is an important biological phenomenon associated with human diseases such as Alzheimer’s disease. Amyloid fibrils also have potential applications in nano-engineering of biomaterials. The kinetics of amyloid assembly show an exponential growth phase preceded by a lag phase, variable in duration as seen in bulk experiments and experiments that mimic the small volumes of cells. Here, to investigate the origins and the properties of the observed variability in the lag phase of amyloid assembly currently not accounted for by deterministic nucleation dependent mechanisms, we formulate a new stochastic minimal model that is capable of describing the characteristics of amyloid growth curves despite its simplicity. We then solve the stochastic differential equations of our model and give mathematical proof of a central limit theorem for the sample growth trajectories of the nucleated aggregation process. These results give an asymptotic description for our simple model, from which closed form analytical results capable of describing and predicting the variability of nucleated amyloid assembly were derived. We also demonstrate the application of our results to inform experiments in a conceptually friendly and clear fashion. Our model offers a new perspective and paves the way for a new and efficient approach on extracting vital information regarding the key initial events of amyloid formation.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.4947472