Minimally entangled typical thermal states versus matrix product purifications for the simulation of equilibrium states and time evolution
For the simulation of equilibrium states and finite-temperature response functions of strongly correlated quantum many-body systems, we compare the efficiencies of two different approaches in the framework of the density matrix renormalization group (DMRG). The first is based on matrix product purif...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2015-09, Vol.92 (12), Article 125119 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Physical review. B |
container_volume | 92 |
creator | Binder, Moritz Barthel, Thomas |
description | For the simulation of equilibrium states and finite-temperature response functions of strongly correlated quantum many-body systems, we compare the efficiencies of two different approaches in the framework of the density matrix renormalization group (DMRG). The first is based on matrix product purifications. The second, more recent one, is based on so-called minimally entangled typical thermal states (METTS). For the latter, we highlight the interplay of statistical and DMRG truncation errors, discuss the use of self-averaging effects, and describe schemes for the computation of response functions. For critical as well as gapped phases of the spin-1/2 XXZ chain and the one-dimensional Bose-Hubbard model, we assess the computation costs and accuracies of the two methods at different temperatures. For almost all considered cases, we find that, for the same computation cost, purifications yield more accurate results than METTS-often by orders of magnitude. The METTS algorithm becomes more efficient only for temperatures well below the system's energy gap. The exponential growth of the computation cost in the evaluation of response functions limits the attainable time scales in both methods and we find that in this regard, METTS do not outperform purifications. |
doi_str_mv | 10.1103/PhysRevB.92.125119 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01204546v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1786192095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-6e455136b82a3085db65008b09ef667f99937e5e9890b7a00ba7956e09d7d8173</originalsourceid><addsrcrecordid>eNo9kdtOwzAMhisEEuPwAlzlEi46nLRpm8uBOElDIAQSd1HauiwobUcOE3sFnpqMAVe27M-_Zf9JckJhSilk54-LtXvC1cVUsCllnFKxk0wo55CyjL_uxhxElQJldD85cO4dgOYiZ5Pk614PulfGrAkOXg1vBlvi10vdKEP8Am3sEeeVR0dWaF1wpFfe6k-ytGMbGk-Wweou4l6PgyPdaDdjxOk-mJ8aGTuCH0EbXVsd-j8xNcQ9ukeCq9GEDXiU7HXKODz-jYfJy_XV8-VtOn-4ubuczdMmq8CnBeac06yoK6YyqHhbFxygqkFgVxRlJ4TISuQoKgF1qQBqVQpeIIi2bCtaZofJ2VZ3oYxc2ni9XctRaXk7m8tNLb4Jcp4XKxrZ0y0br_0I6LzstWvQGDXgGJykZVVQwUDwiLIt2tjROYvdvzYFuTFJ_pkkBZNbk7Jv-XuJrQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786192095</pqid></control><display><type>article</type><title>Minimally entangled typical thermal states versus matrix product purifications for the simulation of equilibrium states and time evolution</title><source>American Physical Society Journals</source><creator>Binder, Moritz ; Barthel, Thomas</creator><creatorcontrib>Binder, Moritz ; Barthel, Thomas</creatorcontrib><description>For the simulation of equilibrium states and finite-temperature response functions of strongly correlated quantum many-body systems, we compare the efficiencies of two different approaches in the framework of the density matrix renormalization group (DMRG). The first is based on matrix product purifications. The second, more recent one, is based on so-called minimally entangled typical thermal states (METTS). For the latter, we highlight the interplay of statistical and DMRG truncation errors, discuss the use of self-averaging effects, and describe schemes for the computation of response functions. For critical as well as gapped phases of the spin-1/2 XXZ chain and the one-dimensional Bose-Hubbard model, we assess the computation costs and accuracies of the two methods at different temperatures. For almost all considered cases, we find that, for the same computation cost, purifications yield more accurate results than METTS-often by orders of magnitude. The METTS algorithm becomes more efficient only for temperatures well below the system's energy gap. The exponential growth of the computation cost in the evaluation of response functions limits the attainable time scales in both methods and we find that in this regard, METTS do not outperform purifications.</description><identifier>ISSN: 1098-0121</identifier><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 1550-235X</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.92.125119</identifier><language>eng</language><publisher>American Physical Society</publisher><subject>Computation ; Computer simulation ; Condensed matter ; Costs ; Density ; Mathematical models ; Physics ; Purification ; Response functions</subject><ispartof>Physical review. B, 2015-09, Vol.92 (12), Article 125119</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-6e455136b82a3085db65008b09ef667f99937e5e9890b7a00ba7956e09d7d8173</citedby><cites>FETCH-LOGICAL-c380t-6e455136b82a3085db65008b09ef667f99937e5e9890b7a00ba7956e09d7d8173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,2877,2878,27929,27930</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01204546$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Binder, Moritz</creatorcontrib><creatorcontrib>Barthel, Thomas</creatorcontrib><title>Minimally entangled typical thermal states versus matrix product purifications for the simulation of equilibrium states and time evolution</title><title>Physical review. B</title><description>For the simulation of equilibrium states and finite-temperature response functions of strongly correlated quantum many-body systems, we compare the efficiencies of two different approaches in the framework of the density matrix renormalization group (DMRG). The first is based on matrix product purifications. The second, more recent one, is based on so-called minimally entangled typical thermal states (METTS). For the latter, we highlight the interplay of statistical and DMRG truncation errors, discuss the use of self-averaging effects, and describe schemes for the computation of response functions. For critical as well as gapped phases of the spin-1/2 XXZ chain and the one-dimensional Bose-Hubbard model, we assess the computation costs and accuracies of the two methods at different temperatures. For almost all considered cases, we find that, for the same computation cost, purifications yield more accurate results than METTS-often by orders of magnitude. The METTS algorithm becomes more efficient only for temperatures well below the system's energy gap. The exponential growth of the computation cost in the evaluation of response functions limits the attainable time scales in both methods and we find that in this regard, METTS do not outperform purifications.</description><subject>Computation</subject><subject>Computer simulation</subject><subject>Condensed matter</subject><subject>Costs</subject><subject>Density</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Purification</subject><subject>Response functions</subject><issn>1098-0121</issn><issn>2469-9950</issn><issn>1550-235X</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kdtOwzAMhisEEuPwAlzlEi46nLRpm8uBOElDIAQSd1HauiwobUcOE3sFnpqMAVe27M-_Zf9JckJhSilk54-LtXvC1cVUsCllnFKxk0wo55CyjL_uxhxElQJldD85cO4dgOYiZ5Pk614PulfGrAkOXg1vBlvi10vdKEP8Am3sEeeVR0dWaF1wpFfe6k-ytGMbGk-Wweou4l6PgyPdaDdjxOk-mJ8aGTuCH0EbXVsd-j8xNcQ9ukeCq9GEDXiU7HXKODz-jYfJy_XV8-VtOn-4ubuczdMmq8CnBeac06yoK6YyqHhbFxygqkFgVxRlJ4TISuQoKgF1qQBqVQpeIIi2bCtaZofJ2VZ3oYxc2ni9XctRaXk7m8tNLb4Jcp4XKxrZ0y0br_0I6LzstWvQGDXgGJykZVVQwUDwiLIt2tjROYvdvzYFuTFJ_pkkBZNbk7Jv-XuJrQ</recordid><startdate>20150910</startdate><enddate>20150910</enddate><creator>Binder, Moritz</creator><creator>Barthel, Thomas</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope></search><sort><creationdate>20150910</creationdate><title>Minimally entangled typical thermal states versus matrix product purifications for the simulation of equilibrium states and time evolution</title><author>Binder, Moritz ; Barthel, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-6e455136b82a3085db65008b09ef667f99937e5e9890b7a00ba7956e09d7d8173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computation</topic><topic>Computer simulation</topic><topic>Condensed matter</topic><topic>Costs</topic><topic>Density</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Purification</topic><topic>Response functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Binder, Moritz</creatorcontrib><creatorcontrib>Barthel, Thomas</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Binder, Moritz</au><au>Barthel, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimally entangled typical thermal states versus matrix product purifications for the simulation of equilibrium states and time evolution</atitle><jtitle>Physical review. B</jtitle><date>2015-09-10</date><risdate>2015</risdate><volume>92</volume><issue>12</issue><artnum>125119</artnum><issn>1098-0121</issn><issn>2469-9950</issn><eissn>1550-235X</eissn><eissn>2469-9969</eissn><abstract>For the simulation of equilibrium states and finite-temperature response functions of strongly correlated quantum many-body systems, we compare the efficiencies of two different approaches in the framework of the density matrix renormalization group (DMRG). The first is based on matrix product purifications. The second, more recent one, is based on so-called minimally entangled typical thermal states (METTS). For the latter, we highlight the interplay of statistical and DMRG truncation errors, discuss the use of self-averaging effects, and describe schemes for the computation of response functions. For critical as well as gapped phases of the spin-1/2 XXZ chain and the one-dimensional Bose-Hubbard model, we assess the computation costs and accuracies of the two methods at different temperatures. For almost all considered cases, we find that, for the same computation cost, purifications yield more accurate results than METTS-often by orders of magnitude. The METTS algorithm becomes more efficient only for temperatures well below the system's energy gap. The exponential growth of the computation cost in the evaluation of response functions limits the attainable time scales in both methods and we find that in this regard, METTS do not outperform purifications.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevB.92.125119</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1098-0121 |
ispartof | Physical review. B, 2015-09, Vol.92 (12), Article 125119 |
issn | 1098-0121 2469-9950 1550-235X 2469-9969 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01204546v1 |
source | American Physical Society Journals |
subjects | Computation Computer simulation Condensed matter Costs Density Mathematical models Physics Purification Response functions |
title | Minimally entangled typical thermal states versus matrix product purifications for the simulation of equilibrium states and time evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T11%3A08%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimally%20entangled%20typical%20thermal%20states%20versus%20matrix%20product%20purifications%20for%20the%20simulation%20of%20equilibrium%20states%20and%20time%20evolution&rft.jtitle=Physical%20review.%20B&rft.au=Binder,%20Moritz&rft.date=2015-09-10&rft.volume=92&rft.issue=12&rft.artnum=125119&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.92.125119&rft_dat=%3Cproquest_hal_p%3E1786192095%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786192095&rft_id=info:pmid/&rfr_iscdi=true |