Minimally entangled typical thermal states versus matrix product purifications for the simulation of equilibrium states and time evolution

For the simulation of equilibrium states and finite-temperature response functions of strongly correlated quantum many-body systems, we compare the efficiencies of two different approaches in the framework of the density matrix renormalization group (DMRG). The first is based on matrix product purif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2015-09, Vol.92 (12), Article 125119
Hauptverfasser: Binder, Moritz, Barthel, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Physical review. B
container_volume 92
creator Binder, Moritz
Barthel, Thomas
description For the simulation of equilibrium states and finite-temperature response functions of strongly correlated quantum many-body systems, we compare the efficiencies of two different approaches in the framework of the density matrix renormalization group (DMRG). The first is based on matrix product purifications. The second, more recent one, is based on so-called minimally entangled typical thermal states (METTS). For the latter, we highlight the interplay of statistical and DMRG truncation errors, discuss the use of self-averaging effects, and describe schemes for the computation of response functions. For critical as well as gapped phases of the spin-1/2 XXZ chain and the one-dimensional Bose-Hubbard model, we assess the computation costs and accuracies of the two methods at different temperatures. For almost all considered cases, we find that, for the same computation cost, purifications yield more accurate results than METTS-often by orders of magnitude. The METTS algorithm becomes more efficient only for temperatures well below the system's energy gap. The exponential growth of the computation cost in the evaluation of response functions limits the attainable time scales in both methods and we find that in this regard, METTS do not outperform purifications.
doi_str_mv 10.1103/PhysRevB.92.125119
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01204546v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1786192095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-6e455136b82a3085db65008b09ef667f99937e5e9890b7a00ba7956e09d7d8173</originalsourceid><addsrcrecordid>eNo9kdtOwzAMhisEEuPwAlzlEi46nLRpm8uBOElDIAQSd1HauiwobUcOE3sFnpqMAVe27M-_Zf9JckJhSilk54-LtXvC1cVUsCllnFKxk0wo55CyjL_uxhxElQJldD85cO4dgOYiZ5Pk614PulfGrAkOXg1vBlvi10vdKEP8Am3sEeeVR0dWaF1wpFfe6k-ytGMbGk-Wweou4l6PgyPdaDdjxOk-mJ8aGTuCH0EbXVsd-j8xNcQ9ukeCq9GEDXiU7HXKODz-jYfJy_XV8-VtOn-4ubuczdMmq8CnBeac06yoK6YyqHhbFxygqkFgVxRlJ4TISuQoKgF1qQBqVQpeIIi2bCtaZofJ2VZ3oYxc2ni9XctRaXk7m8tNLb4Jcp4XKxrZ0y0br_0I6LzstWvQGDXgGJykZVVQwUDwiLIt2tjROYvdvzYFuTFJ_pkkBZNbk7Jv-XuJrQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786192095</pqid></control><display><type>article</type><title>Minimally entangled typical thermal states versus matrix product purifications for the simulation of equilibrium states and time evolution</title><source>American Physical Society Journals</source><creator>Binder, Moritz ; Barthel, Thomas</creator><creatorcontrib>Binder, Moritz ; Barthel, Thomas</creatorcontrib><description>For the simulation of equilibrium states and finite-temperature response functions of strongly correlated quantum many-body systems, we compare the efficiencies of two different approaches in the framework of the density matrix renormalization group (DMRG). The first is based on matrix product purifications. The second, more recent one, is based on so-called minimally entangled typical thermal states (METTS). For the latter, we highlight the interplay of statistical and DMRG truncation errors, discuss the use of self-averaging effects, and describe schemes for the computation of response functions. For critical as well as gapped phases of the spin-1/2 XXZ chain and the one-dimensional Bose-Hubbard model, we assess the computation costs and accuracies of the two methods at different temperatures. For almost all considered cases, we find that, for the same computation cost, purifications yield more accurate results than METTS-often by orders of magnitude. The METTS algorithm becomes more efficient only for temperatures well below the system's energy gap. The exponential growth of the computation cost in the evaluation of response functions limits the attainable time scales in both methods and we find that in this regard, METTS do not outperform purifications.</description><identifier>ISSN: 1098-0121</identifier><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 1550-235X</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.92.125119</identifier><language>eng</language><publisher>American Physical Society</publisher><subject>Computation ; Computer simulation ; Condensed matter ; Costs ; Density ; Mathematical models ; Physics ; Purification ; Response functions</subject><ispartof>Physical review. B, 2015-09, Vol.92 (12), Article 125119</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-6e455136b82a3085db65008b09ef667f99937e5e9890b7a00ba7956e09d7d8173</citedby><cites>FETCH-LOGICAL-c380t-6e455136b82a3085db65008b09ef667f99937e5e9890b7a00ba7956e09d7d8173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,2877,2878,27929,27930</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01204546$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Binder, Moritz</creatorcontrib><creatorcontrib>Barthel, Thomas</creatorcontrib><title>Minimally entangled typical thermal states versus matrix product purifications for the simulation of equilibrium states and time evolution</title><title>Physical review. B</title><description>For the simulation of equilibrium states and finite-temperature response functions of strongly correlated quantum many-body systems, we compare the efficiencies of two different approaches in the framework of the density matrix renormalization group (DMRG). The first is based on matrix product purifications. The second, more recent one, is based on so-called minimally entangled typical thermal states (METTS). For the latter, we highlight the interplay of statistical and DMRG truncation errors, discuss the use of self-averaging effects, and describe schemes for the computation of response functions. For critical as well as gapped phases of the spin-1/2 XXZ chain and the one-dimensional Bose-Hubbard model, we assess the computation costs and accuracies of the two methods at different temperatures. For almost all considered cases, we find that, for the same computation cost, purifications yield more accurate results than METTS-often by orders of magnitude. The METTS algorithm becomes more efficient only for temperatures well below the system's energy gap. The exponential growth of the computation cost in the evaluation of response functions limits the attainable time scales in both methods and we find that in this regard, METTS do not outperform purifications.</description><subject>Computation</subject><subject>Computer simulation</subject><subject>Condensed matter</subject><subject>Costs</subject><subject>Density</subject><subject>Mathematical models</subject><subject>Physics</subject><subject>Purification</subject><subject>Response functions</subject><issn>1098-0121</issn><issn>2469-9950</issn><issn>1550-235X</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kdtOwzAMhisEEuPwAlzlEi46nLRpm8uBOElDIAQSd1HauiwobUcOE3sFnpqMAVe27M-_Zf9JckJhSilk54-LtXvC1cVUsCllnFKxk0wo55CyjL_uxhxElQJldD85cO4dgOYiZ5Pk614PulfGrAkOXg1vBlvi10vdKEP8Am3sEeeVR0dWaF1wpFfe6k-ytGMbGk-Wweou4l6PgyPdaDdjxOk-mJ8aGTuCH0EbXVsd-j8xNcQ9ukeCq9GEDXiU7HXKODz-jYfJy_XV8-VtOn-4ubuczdMmq8CnBeac06yoK6YyqHhbFxygqkFgVxRlJ4TISuQoKgF1qQBqVQpeIIi2bCtaZofJ2VZ3oYxc2ni9XctRaXk7m8tNLb4Jcp4XKxrZ0y0br_0I6LzstWvQGDXgGJykZVVQwUDwiLIt2tjROYvdvzYFuTFJ_pkkBZNbk7Jv-XuJrQ</recordid><startdate>20150910</startdate><enddate>20150910</enddate><creator>Binder, Moritz</creator><creator>Barthel, Thomas</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope></search><sort><creationdate>20150910</creationdate><title>Minimally entangled typical thermal states versus matrix product purifications for the simulation of equilibrium states and time evolution</title><author>Binder, Moritz ; Barthel, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-6e455136b82a3085db65008b09ef667f99937e5e9890b7a00ba7956e09d7d8173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Computation</topic><topic>Computer simulation</topic><topic>Condensed matter</topic><topic>Costs</topic><topic>Density</topic><topic>Mathematical models</topic><topic>Physics</topic><topic>Purification</topic><topic>Response functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Binder, Moritz</creatorcontrib><creatorcontrib>Barthel, Thomas</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Binder, Moritz</au><au>Barthel, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimally entangled typical thermal states versus matrix product purifications for the simulation of equilibrium states and time evolution</atitle><jtitle>Physical review. B</jtitle><date>2015-09-10</date><risdate>2015</risdate><volume>92</volume><issue>12</issue><artnum>125119</artnum><issn>1098-0121</issn><issn>2469-9950</issn><eissn>1550-235X</eissn><eissn>2469-9969</eissn><abstract>For the simulation of equilibrium states and finite-temperature response functions of strongly correlated quantum many-body systems, we compare the efficiencies of two different approaches in the framework of the density matrix renormalization group (DMRG). The first is based on matrix product purifications. The second, more recent one, is based on so-called minimally entangled typical thermal states (METTS). For the latter, we highlight the interplay of statistical and DMRG truncation errors, discuss the use of self-averaging effects, and describe schemes for the computation of response functions. For critical as well as gapped phases of the spin-1/2 XXZ chain and the one-dimensional Bose-Hubbard model, we assess the computation costs and accuracies of the two methods at different temperatures. For almost all considered cases, we find that, for the same computation cost, purifications yield more accurate results than METTS-often by orders of magnitude. The METTS algorithm becomes more efficient only for temperatures well below the system's energy gap. The exponential growth of the computation cost in the evaluation of response functions limits the attainable time scales in both methods and we find that in this regard, METTS do not outperform purifications.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevB.92.125119</doi></addata></record>
fulltext fulltext
identifier ISSN: 1098-0121
ispartof Physical review. B, 2015-09, Vol.92 (12), Article 125119
issn 1098-0121
2469-9950
1550-235X
2469-9969
language eng
recordid cdi_hal_primary_oai_HAL_hal_01204546v1
source American Physical Society Journals
subjects Computation
Computer simulation
Condensed matter
Costs
Density
Mathematical models
Physics
Purification
Response functions
title Minimally entangled typical thermal states versus matrix product purifications for the simulation of equilibrium states and time evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T11%3A08%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimally%20entangled%20typical%20thermal%20states%20versus%20matrix%20product%20purifications%20for%20the%20simulation%20of%20equilibrium%20states%20and%20time%20evolution&rft.jtitle=Physical%20review.%20B&rft.au=Binder,%20Moritz&rft.date=2015-09-10&rft.volume=92&rft.issue=12&rft.artnum=125119&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.92.125119&rft_dat=%3Cproquest_hal_p%3E1786192095%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786192095&rft_id=info:pmid/&rfr_iscdi=true