Minimally entangled typical thermal states versus matrix product purifications for the simulation of equilibrium states and time evolution

For the simulation of equilibrium states and finite-temperature response functions of strongly correlated quantum many-body systems, we compare the efficiencies of two different approaches in the framework of the density matrix renormalization group (DMRG). The first is based on matrix product purif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2015-09, Vol.92 (12), Article 125119
Hauptverfasser: Binder, Moritz, Barthel, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For the simulation of equilibrium states and finite-temperature response functions of strongly correlated quantum many-body systems, we compare the efficiencies of two different approaches in the framework of the density matrix renormalization group (DMRG). The first is based on matrix product purifications. The second, more recent one, is based on so-called minimally entangled typical thermal states (METTS). For the latter, we highlight the interplay of statistical and DMRG truncation errors, discuss the use of self-averaging effects, and describe schemes for the computation of response functions. For critical as well as gapped phases of the spin-1/2 XXZ chain and the one-dimensional Bose-Hubbard model, we assess the computation costs and accuracies of the two methods at different temperatures. For almost all considered cases, we find that, for the same computation cost, purifications yield more accurate results than METTS-often by orders of magnitude. The METTS algorithm becomes more efficient only for temperatures well below the system's energy gap. The exponential growth of the computation cost in the evaluation of response functions limits the attainable time scales in both methods and we find that in this regard, METTS do not outperform purifications.
ISSN:1098-0121
2469-9950
1550-235X
2469-9969
DOI:10.1103/PhysRevB.92.125119