Incipient fault amplitude estimation using KL divergence with a probabilistic approach

The Kullback–Leibler (KL) divergence is at the centre of Information Theory and change detection. It is characterized with a high sensitivity to incipient faults that cause unpredictable small changes in the process measurements. This work yields an analytical model based on the KL divergence to est...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal processing 2016-03, Vol.120, p.1-7
Hauptverfasser: Harmouche, Jinane, Delpha, Claude, Diallo, Demba
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue
container_start_page 1
container_title Signal processing
container_volume 120
creator Harmouche, Jinane
Delpha, Claude
Diallo, Demba
description The Kullback–Leibler (KL) divergence is at the centre of Information Theory and change detection. It is characterized with a high sensitivity to incipient faults that cause unpredictable small changes in the process measurements. This work yields an analytical model based on the KL divergence to estimate the incipient fault magnitude in multivariate processes. In practice, the divergence has no closed form and it must be numerically approximated. In the particular case of incipient fault, the numerical approximation of the divergence causes many false alarms and missed detections because of the slight effect of the incipient fault. In this paper, the ability and relevance to estimate the incipient fault amplitude using the numerical divergence is studied. The divergence is approximated through the calculation of discrete probabilities for faultless and faulty signals. The estimation results that are obtained by simulation induce an error lower than 1% on the fault amplitude. •We propose an analytical model based on KL divergence to estimate fault severity.•We show ability and relevance to estimate fault amplitude in multivariate process.•We approximate the divergence through calculation of discrete probabilities.•The fault severity estimation results are obtained with an error lower than 1%.
doi_str_mv 10.1016/j.sigpro.2015.08.008
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01199905v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165168415002819</els_id><sourcerecordid>oai_HAL_hal_01199905v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-a568b16c133f09e6be2c5b46b8efbcb4db0ee948ac2f75b4f6dea63945d32ff23</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwDxi8MiTY-XCcBamqgCIisQCrZTvn1lWaRLZbxL_HURAj0-nu3vc-HoRuKUkpoex-n3q7Hd2QZoSWKeEpIfwMLSivsqQqy-ocLaKsTCjjxSW68n5PCKE5Iwv0-dJrO1roAzby2AUsD2Nnw7EFDD7Ygwx26PHR236LXxvc2hO4LfQa8JcNOyxxXKuksp2Nao3lGHOpd9fowsjOw81vXKKPp8f39SZp3p5f1qsm0TlnIZEl44oyTfPckBqYgkyXqmCKg1FaFa0iAHXBpc5MFRuGtSBZXhdlm2fGZPkS3c1zd7ITo4v3um8xSCs2q0ZMNUJpXdekPNGoLWatdoP3DsyfgRIxcRR7MXMUE0dBuIgco-1htkH842TBCa_tRKC1DnQQ7WD_H_ADCrZ_vg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Incipient fault amplitude estimation using KL divergence with a probabilistic approach</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Harmouche, Jinane ; Delpha, Claude ; Diallo, Demba</creator><creatorcontrib>Harmouche, Jinane ; Delpha, Claude ; Diallo, Demba</creatorcontrib><description>The Kullback–Leibler (KL) divergence is at the centre of Information Theory and change detection. It is characterized with a high sensitivity to incipient faults that cause unpredictable small changes in the process measurements. This work yields an analytical model based on the KL divergence to estimate the incipient fault magnitude in multivariate processes. In practice, the divergence has no closed form and it must be numerically approximated. In the particular case of incipient fault, the numerical approximation of the divergence causes many false alarms and missed detections because of the slight effect of the incipient fault. In this paper, the ability and relevance to estimate the incipient fault amplitude using the numerical divergence is studied. The divergence is approximated through the calculation of discrete probabilities for faultless and faulty signals. The estimation results that are obtained by simulation induce an error lower than 1% on the fault amplitude. •We propose an analytical model based on KL divergence to estimate fault severity.•We show ability and relevance to estimate fault amplitude in multivariate process.•We approximate the divergence through calculation of discrete probabilities.•The fault severity estimation results are obtained with an error lower than 1%.</description><identifier>ISSN: 0165-1684</identifier><identifier>EISSN: 1872-7557</identifier><identifier>DOI: 10.1016/j.sigpro.2015.08.008</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Engineering Sciences ; Fault estimation ; Kullback–Leibler divergence ; Principal component analysis ; Signal and Image processing</subject><ispartof>Signal processing, 2016-03, Vol.120, p.1-7</ispartof><rights>2015 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-a568b16c133f09e6be2c5b46b8efbcb4db0ee948ac2f75b4f6dea63945d32ff23</citedby><cites>FETCH-LOGICAL-c386t-a568b16c133f09e6be2c5b46b8efbcb4db0ee948ac2f75b4f6dea63945d32ff23</cites><orcidid>0000-0003-3224-8628 ; 0000-0002-4421-6175</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.sigpro.2015.08.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01199905$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Harmouche, Jinane</creatorcontrib><creatorcontrib>Delpha, Claude</creatorcontrib><creatorcontrib>Diallo, Demba</creatorcontrib><title>Incipient fault amplitude estimation using KL divergence with a probabilistic approach</title><title>Signal processing</title><description>The Kullback–Leibler (KL) divergence is at the centre of Information Theory and change detection. It is characterized with a high sensitivity to incipient faults that cause unpredictable small changes in the process measurements. This work yields an analytical model based on the KL divergence to estimate the incipient fault magnitude in multivariate processes. In practice, the divergence has no closed form and it must be numerically approximated. In the particular case of incipient fault, the numerical approximation of the divergence causes many false alarms and missed detections because of the slight effect of the incipient fault. In this paper, the ability and relevance to estimate the incipient fault amplitude using the numerical divergence is studied. The divergence is approximated through the calculation of discrete probabilities for faultless and faulty signals. The estimation results that are obtained by simulation induce an error lower than 1% on the fault amplitude. •We propose an analytical model based on KL divergence to estimate fault severity.•We show ability and relevance to estimate fault amplitude in multivariate process.•We approximate the divergence through calculation of discrete probabilities.•The fault severity estimation results are obtained with an error lower than 1%.</description><subject>Engineering Sciences</subject><subject>Fault estimation</subject><subject>Kullback–Leibler divergence</subject><subject>Principal component analysis</subject><subject>Signal and Image processing</subject><issn>0165-1684</issn><issn>1872-7557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwDxi8MiTY-XCcBamqgCIisQCrZTvn1lWaRLZbxL_HURAj0-nu3vc-HoRuKUkpoex-n3q7Hd2QZoSWKeEpIfwMLSivsqQqy-ocLaKsTCjjxSW68n5PCKE5Iwv0-dJrO1roAzby2AUsD2Nnw7EFDD7Ygwx26PHR236LXxvc2hO4LfQa8JcNOyxxXKuksp2Nao3lGHOpd9fowsjOw81vXKKPp8f39SZp3p5f1qsm0TlnIZEl44oyTfPckBqYgkyXqmCKg1FaFa0iAHXBpc5MFRuGtSBZXhdlm2fGZPkS3c1zd7ITo4v3um8xSCs2q0ZMNUJpXdekPNGoLWatdoP3DsyfgRIxcRR7MXMUE0dBuIgco-1htkH842TBCa_tRKC1DnQQ7WD_H_ADCrZ_vg</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Harmouche, Jinane</creator><creator>Delpha, Claude</creator><creator>Diallo, Demba</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3224-8628</orcidid><orcidid>https://orcid.org/0000-0002-4421-6175</orcidid></search><sort><creationdate>201603</creationdate><title>Incipient fault amplitude estimation using KL divergence with a probabilistic approach</title><author>Harmouche, Jinane ; Delpha, Claude ; Diallo, Demba</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-a568b16c133f09e6be2c5b46b8efbcb4db0ee948ac2f75b4f6dea63945d32ff23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Engineering Sciences</topic><topic>Fault estimation</topic><topic>Kullback–Leibler divergence</topic><topic>Principal component analysis</topic><topic>Signal and Image processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harmouche, Jinane</creatorcontrib><creatorcontrib>Delpha, Claude</creatorcontrib><creatorcontrib>Diallo, Demba</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harmouche, Jinane</au><au>Delpha, Claude</au><au>Diallo, Demba</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incipient fault amplitude estimation using KL divergence with a probabilistic approach</atitle><jtitle>Signal processing</jtitle><date>2016-03</date><risdate>2016</risdate><volume>120</volume><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0165-1684</issn><eissn>1872-7557</eissn><abstract>The Kullback–Leibler (KL) divergence is at the centre of Information Theory and change detection. It is characterized with a high sensitivity to incipient faults that cause unpredictable small changes in the process measurements. This work yields an analytical model based on the KL divergence to estimate the incipient fault magnitude in multivariate processes. In practice, the divergence has no closed form and it must be numerically approximated. In the particular case of incipient fault, the numerical approximation of the divergence causes many false alarms and missed detections because of the slight effect of the incipient fault. In this paper, the ability and relevance to estimate the incipient fault amplitude using the numerical divergence is studied. The divergence is approximated through the calculation of discrete probabilities for faultless and faulty signals. The estimation results that are obtained by simulation induce an error lower than 1% on the fault amplitude. •We propose an analytical model based on KL divergence to estimate fault severity.•We show ability and relevance to estimate fault amplitude in multivariate process.•We approximate the divergence through calculation of discrete probabilities.•The fault severity estimation results are obtained with an error lower than 1%.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.sigpro.2015.08.008</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3224-8628</orcidid><orcidid>https://orcid.org/0000-0002-4421-6175</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0165-1684
ispartof Signal processing, 2016-03, Vol.120, p.1-7
issn 0165-1684
1872-7557
language eng
recordid cdi_hal_primary_oai_HAL_hal_01199905v1
source Elsevier ScienceDirect Journals Complete
subjects Engineering Sciences
Fault estimation
Kullback–Leibler divergence
Principal component analysis
Signal and Image processing
title Incipient fault amplitude estimation using KL divergence with a probabilistic approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A54%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incipient%20fault%20amplitude%20estimation%20using%20KL%20divergence%20with%20a%20probabilistic%20approach&rft.jtitle=Signal%20processing&rft.au=Harmouche,%20Jinane&rft.date=2016-03&rft.volume=120&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0165-1684&rft.eissn=1872-7557&rft_id=info:doi/10.1016/j.sigpro.2015.08.008&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01199905v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0165168415002819&rfr_iscdi=true