Cop and Robber Game and Hyperbolicity
In this note, we prove that all cop-win graphs $G$ in the game in which the robber and the cop move at different speeds $s$ and $s'$ with $s'0$, this establishes a new---game-theoretical---characterization of Gromov hyperbolicity. We also show that for weakly modular graphs the dependency...
Gespeichert in:
Veröffentlicht in: | SIAM journal on discrete mathematics 2014-01, Vol.28 (4), p.1987-2007 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this note, we prove that all cop-win graphs $G$ in the game in which the robber and the cop move at different speeds $s$ and $s'$ with $s'0$, this establishes a new---game-theoretical---characterization of Gromov hyperbolicity. We also show that for weakly modular graphs the dependency between $\delta$ and $s$ is linear for any $s' |
---|---|
ISSN: | 0895-4801 1095-7146 |
DOI: | 10.1137/130941328 |