Cop and Robber Game and Hyperbolicity

In this note, we prove that all cop-win graphs $G$ in the game in which the robber and the cop move at different speeds $s$ and $s'$ with $s'0$, this establishes a new---game-theoretical---characterization of Gromov hyperbolicity. We also show that for weakly modular graphs the dependency...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on discrete mathematics 2014-01, Vol.28 (4), p.1987-2007
Hauptverfasser: Chalopin, Jérémie, Chepoi, Victor, Papasoglu, Panos, Pecatte, Timothée
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this note, we prove that all cop-win graphs $G$ in the game in which the robber and the cop move at different speeds $s$ and $s'$ with $s'0$, this establishes a new---game-theoretical---characterization of Gromov hyperbolicity. We also show that for weakly modular graphs the dependency between $\delta$ and $s$ is linear for any $s'
ISSN:0895-4801
1095-7146
DOI:10.1137/130941328