Leishmania promastigotes induce cytokine secretion in macrophages through the degradation of synaptotagmin XI

Synaptotagmins (Syts) are type-I membrane proteins that regulate vesicle docking and fusion in processes such as exocytosis and phagocytosis. We recently discovered that Syt XI is a recycling endosome- and lysosome-associated protein that negatively regulates the secretion of TNF and IL-6. In this s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2014-09, Vol.193 (5), p.2363-2372
Hauptverfasser: Arango Duque, Guillermo, Fukuda, Mitsunori, Turco, Salvatore J, Stäger, Simona, Descoteaux, Albert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Synaptotagmins (Syts) are type-I membrane proteins that regulate vesicle docking and fusion in processes such as exocytosis and phagocytosis. We recently discovered that Syt XI is a recycling endosome- and lysosome-associated protein that negatively regulates the secretion of TNF and IL-6. In this study, we show that Syt XI is directly degraded by the zinc metalloprotease GP63 and excluded from Leishmania parasitophorous vacuoles by the promastigotes surface glycolipid lipophosphoglycan. Infected macrophages were found to release TNF and IL-6 in a GP63-dependent manner. To demonstrate that cytokine release was dependent on GP63-mediated degradation of Syt XI, small interfering RNA-mediated knockdown of Syt XI before infection revealed that the effects of small interfering RNA knockdown and GP63 degradation were not cumulative. In mice, i.p. injection of GP63-expressing parasites led to an increase in TNF and IL-6 secretion and to an augmented influx of neutrophils and inflammatory monocytes to the inoculation site. Both of these cell types have been shown to be infection targets and aid in the establishment of infection. In sum, our data revealed that GP63 induces proinflammatory cytokine release and increases infiltration of inflammatory phagocytes. This study provides new insight on how Leishmania exploits the immune response to establish infection.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.1303043