First Order Mean Field Games with Density Constraints: Pressure Equals Price
In this paper we study Mean Field Game systems under density constraints as optimality conditions of two optimization problems in duality. A weak solution of the system contains an extra term, an additional price imposed on the saturated zones. We show that this price corresponds to the pressure fie...
Gespeichert in:
Veröffentlicht in: | SIAM journal on control and optimization 2016-01, Vol.54 (5), p.2672-2709 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2709 |
---|---|
container_issue | 5 |
container_start_page | 2672 |
container_title | SIAM journal on control and optimization |
container_volume | 54 |
creator | Cardaliaguet, Pierre Mészáros, Alpár R. Santambrogio, Filippo |
description | In this paper we study Mean Field Game systems under density constraints as optimality conditions of two optimization problems in duality. A weak solution of the system contains an extra term, an additional price imposed on the saturated zones. We show that this price corresponds to the pressure field from the models of incompressible Euler's equations à la Brenier. By this observation we manage to obtain a minimal regularity, which allows to write optimality conditions at the level of single agent trajectories and to define a weak notion of Nash equilibrium for our model. |
doi_str_mv | 10.1137/15M1029849 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01173947v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01173947v2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-9fb9f96d42a746f47e265a8183ca3ca2a0f06188e5bac60e9b66d04786d02fae3</originalsourceid><addsrcrecordid>eNpFkE9LAzEQxYMoWKsXP0GuCquZJJs_3krttsKWetDzku5OaKTdarK19Nu7paIwzPB7vHmHR8gtsAcAoR8hnwPj1kh7RgbAbJ5pEOacDJhQImPA7SW5SumDMZAS5ICURYipo4vYYKRzdC0tAq4bOnUbTHQfuhV9xjaF7kDH2zZ10YW2S0_0NWJKu4h08rVz69RzqPGaXPge8Ob3Dsl7MXkbz7JyMX0Zj8qsFpJ3mfVL661qJHdaKi81cpU7A0bUrh_umGcKjMF86WrF0C6VapjUpt_cOxRDcnfKXbl19RnDxsVDtXWhmo3K6qgxAC2s1N-8996fvHXcphTR_z0Aq46dVf-diR9mYlz4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>First Order Mean Field Games with Density Constraints: Pressure Equals Price</title><source>SIAM Journals Online</source><creator>Cardaliaguet, Pierre ; Mészáros, Alpár R. ; Santambrogio, Filippo</creator><creatorcontrib>Cardaliaguet, Pierre ; Mészáros, Alpár R. ; Santambrogio, Filippo</creatorcontrib><description>In this paper we study Mean Field Game systems under density constraints as optimality conditions of two optimization problems in duality. A weak solution of the system contains an extra term, an additional price imposed on the saturated zones. We show that this price corresponds to the pressure field from the models of incompressible Euler's equations à la Brenier. By this observation we manage to obtain a minimal regularity, which allows to write optimality conditions at the level of single agent trajectories and to define a weak notion of Nash equilibrium for our model.</description><identifier>ISSN: 0363-0129</identifier><identifier>EISSN: 1095-7138</identifier><identifier>DOI: 10.1137/15M1029849</identifier><language>eng</language><publisher>Society for Industrial and Applied Mathematics</publisher><subject>Mathematics ; Optimization and Control</subject><ispartof>SIAM journal on control and optimization, 2016-01, Vol.54 (5), p.2672-2709</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-9fb9f96d42a746f47e265a8183ca3ca2a0f06188e5bac60e9b66d04786d02fae3</citedby><cites>FETCH-LOGICAL-c342t-9fb9f96d42a746f47e265a8183ca3ca2a0f06188e5bac60e9b66d04786d02fae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3184,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01173947$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cardaliaguet, Pierre</creatorcontrib><creatorcontrib>Mészáros, Alpár R.</creatorcontrib><creatorcontrib>Santambrogio, Filippo</creatorcontrib><title>First Order Mean Field Games with Density Constraints: Pressure Equals Price</title><title>SIAM journal on control and optimization</title><description>In this paper we study Mean Field Game systems under density constraints as optimality conditions of two optimization problems in duality. A weak solution of the system contains an extra term, an additional price imposed on the saturated zones. We show that this price corresponds to the pressure field from the models of incompressible Euler's equations à la Brenier. By this observation we manage to obtain a minimal regularity, which allows to write optimality conditions at the level of single agent trajectories and to define a weak notion of Nash equilibrium for our model.</description><subject>Mathematics</subject><subject>Optimization and Control</subject><issn>0363-0129</issn><issn>1095-7138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpFkE9LAzEQxYMoWKsXP0GuCquZJJs_3krttsKWetDzku5OaKTdarK19Nu7paIwzPB7vHmHR8gtsAcAoR8hnwPj1kh7RgbAbJ5pEOacDJhQImPA7SW5SumDMZAS5ICURYipo4vYYKRzdC0tAq4bOnUbTHQfuhV9xjaF7kDH2zZ10YW2S0_0NWJKu4h08rVz69RzqPGaXPge8Ob3Dsl7MXkbz7JyMX0Zj8qsFpJ3mfVL661qJHdaKi81cpU7A0bUrh_umGcKjMF86WrF0C6VapjUpt_cOxRDcnfKXbl19RnDxsVDtXWhmo3K6qgxAC2s1N-8996fvHXcphTR_z0Aq46dVf-diR9mYlz4</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Cardaliaguet, Pierre</creator><creator>Mészáros, Alpár R.</creator><creator>Santambrogio, Filippo</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>201601</creationdate><title>First Order Mean Field Games with Density Constraints: Pressure Equals Price</title><author>Cardaliaguet, Pierre ; Mészáros, Alpár R. ; Santambrogio, Filippo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-9fb9f96d42a746f47e265a8183ca3ca2a0f06188e5bac60e9b66d04786d02fae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Mathematics</topic><topic>Optimization and Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cardaliaguet, Pierre</creatorcontrib><creatorcontrib>Mészáros, Alpár R.</creatorcontrib><creatorcontrib>Santambrogio, Filippo</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>SIAM journal on control and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cardaliaguet, Pierre</au><au>Mészáros, Alpár R.</au><au>Santambrogio, Filippo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First Order Mean Field Games with Density Constraints: Pressure Equals Price</atitle><jtitle>SIAM journal on control and optimization</jtitle><date>2016-01</date><risdate>2016</risdate><volume>54</volume><issue>5</issue><spage>2672</spage><epage>2709</epage><pages>2672-2709</pages><issn>0363-0129</issn><eissn>1095-7138</eissn><abstract>In this paper we study Mean Field Game systems under density constraints as optimality conditions of two optimization problems in duality. A weak solution of the system contains an extra term, an additional price imposed on the saturated zones. We show that this price corresponds to the pressure field from the models of incompressible Euler's equations à la Brenier. By this observation we manage to obtain a minimal regularity, which allows to write optimality conditions at the level of single agent trajectories and to define a weak notion of Nash equilibrium for our model.</abstract><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/15M1029849</doi><tpages>38</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-0129 |
ispartof | SIAM journal on control and optimization, 2016-01, Vol.54 (5), p.2672-2709 |
issn | 0363-0129 1095-7138 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01173947v2 |
source | SIAM Journals Online |
subjects | Mathematics Optimization and Control |
title | First Order Mean Field Games with Density Constraints: Pressure Equals Price |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A00%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First%20Order%20Mean%20Field%20Games%20with%20Density%20Constraints:%20Pressure%20Equals%20Price&rft.jtitle=SIAM%20journal%20on%20control%20and%20optimization&rft.au=Cardaliaguet,%20Pierre&rft.date=2016-01&rft.volume=54&rft.issue=5&rft.spage=2672&rft.epage=2709&rft.pages=2672-2709&rft.issn=0363-0129&rft.eissn=1095-7138&rft_id=info:doi/10.1137/15M1029849&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01173947v2%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |