First Order Mean Field Games with Density Constraints: Pressure Equals Price

In this paper we study Mean Field Game systems under density constraints as optimality conditions of two optimization problems in duality. A weak solution of the system contains an extra term, an additional price imposed on the saturated zones. We show that this price corresponds to the pressure fie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on control and optimization 2016-01, Vol.54 (5), p.2672-2709
Hauptverfasser: Cardaliaguet, Pierre, Mészáros, Alpár R., Santambrogio, Filippo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2709
container_issue 5
container_start_page 2672
container_title SIAM journal on control and optimization
container_volume 54
creator Cardaliaguet, Pierre
Mészáros, Alpár R.
Santambrogio, Filippo
description In this paper we study Mean Field Game systems under density constraints as optimality conditions of two optimization problems in duality. A weak solution of the system contains an extra term, an additional price imposed on the saturated zones. We show that this price corresponds to the pressure field from the models of incompressible Euler's equations à la Brenier. By this observation we manage to obtain a minimal regularity, which allows to write optimality conditions at the level of single agent trajectories and to define a weak notion of Nash equilibrium for our model.
doi_str_mv 10.1137/15M1029849
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01173947v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01173947v2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-9fb9f96d42a746f47e265a8183ca3ca2a0f06188e5bac60e9b66d04786d02fae3</originalsourceid><addsrcrecordid>eNpFkE9LAzEQxYMoWKsXP0GuCquZJJs_3krttsKWetDzku5OaKTdarK19Nu7paIwzPB7vHmHR8gtsAcAoR8hnwPj1kh7RgbAbJ5pEOacDJhQImPA7SW5SumDMZAS5ICURYipo4vYYKRzdC0tAq4bOnUbTHQfuhV9xjaF7kDH2zZ10YW2S0_0NWJKu4h08rVz69RzqPGaXPge8Ob3Dsl7MXkbz7JyMX0Zj8qsFpJ3mfVL661qJHdaKi81cpU7A0bUrh_umGcKjMF86WrF0C6VapjUpt_cOxRDcnfKXbl19RnDxsVDtXWhmo3K6qgxAC2s1N-8996fvHXcphTR_z0Aq46dVf-diR9mYlz4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>First Order Mean Field Games with Density Constraints: Pressure Equals Price</title><source>SIAM Journals Online</source><creator>Cardaliaguet, Pierre ; Mészáros, Alpár R. ; Santambrogio, Filippo</creator><creatorcontrib>Cardaliaguet, Pierre ; Mészáros, Alpár R. ; Santambrogio, Filippo</creatorcontrib><description>In this paper we study Mean Field Game systems under density constraints as optimality conditions of two optimization problems in duality. A weak solution of the system contains an extra term, an additional price imposed on the saturated zones. We show that this price corresponds to the pressure field from the models of incompressible Euler's equations à la Brenier. By this observation we manage to obtain a minimal regularity, which allows to write optimality conditions at the level of single agent trajectories and to define a weak notion of Nash equilibrium for our model.</description><identifier>ISSN: 0363-0129</identifier><identifier>EISSN: 1095-7138</identifier><identifier>DOI: 10.1137/15M1029849</identifier><language>eng</language><publisher>Society for Industrial and Applied Mathematics</publisher><subject>Mathematics ; Optimization and Control</subject><ispartof>SIAM journal on control and optimization, 2016-01, Vol.54 (5), p.2672-2709</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-9fb9f96d42a746f47e265a8183ca3ca2a0f06188e5bac60e9b66d04786d02fae3</citedby><cites>FETCH-LOGICAL-c342t-9fb9f96d42a746f47e265a8183ca3ca2a0f06188e5bac60e9b66d04786d02fae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3184,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01173947$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cardaliaguet, Pierre</creatorcontrib><creatorcontrib>Mészáros, Alpár R.</creatorcontrib><creatorcontrib>Santambrogio, Filippo</creatorcontrib><title>First Order Mean Field Games with Density Constraints: Pressure Equals Price</title><title>SIAM journal on control and optimization</title><description>In this paper we study Mean Field Game systems under density constraints as optimality conditions of two optimization problems in duality. A weak solution of the system contains an extra term, an additional price imposed on the saturated zones. We show that this price corresponds to the pressure field from the models of incompressible Euler's equations à la Brenier. By this observation we manage to obtain a minimal regularity, which allows to write optimality conditions at the level of single agent trajectories and to define a weak notion of Nash equilibrium for our model.</description><subject>Mathematics</subject><subject>Optimization and Control</subject><issn>0363-0129</issn><issn>1095-7138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpFkE9LAzEQxYMoWKsXP0GuCquZJJs_3krttsKWetDzku5OaKTdarK19Nu7paIwzPB7vHmHR8gtsAcAoR8hnwPj1kh7RgbAbJ5pEOacDJhQImPA7SW5SumDMZAS5ICURYipo4vYYKRzdC0tAq4bOnUbTHQfuhV9xjaF7kDH2zZ10YW2S0_0NWJKu4h08rVz69RzqPGaXPge8Ob3Dsl7MXkbz7JyMX0Zj8qsFpJ3mfVL661qJHdaKi81cpU7A0bUrh_umGcKjMF86WrF0C6VapjUpt_cOxRDcnfKXbl19RnDxsVDtXWhmo3K6qgxAC2s1N-8996fvHXcphTR_z0Aq46dVf-diR9mYlz4</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Cardaliaguet, Pierre</creator><creator>Mészáros, Alpár R.</creator><creator>Santambrogio, Filippo</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>201601</creationdate><title>First Order Mean Field Games with Density Constraints: Pressure Equals Price</title><author>Cardaliaguet, Pierre ; Mészáros, Alpár R. ; Santambrogio, Filippo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-9fb9f96d42a746f47e265a8183ca3ca2a0f06188e5bac60e9b66d04786d02fae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Mathematics</topic><topic>Optimization and Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cardaliaguet, Pierre</creatorcontrib><creatorcontrib>Mészáros, Alpár R.</creatorcontrib><creatorcontrib>Santambrogio, Filippo</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>SIAM journal on control and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cardaliaguet, Pierre</au><au>Mészáros, Alpár R.</au><au>Santambrogio, Filippo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First Order Mean Field Games with Density Constraints: Pressure Equals Price</atitle><jtitle>SIAM journal on control and optimization</jtitle><date>2016-01</date><risdate>2016</risdate><volume>54</volume><issue>5</issue><spage>2672</spage><epage>2709</epage><pages>2672-2709</pages><issn>0363-0129</issn><eissn>1095-7138</eissn><abstract>In this paper we study Mean Field Game systems under density constraints as optimality conditions of two optimization problems in duality. A weak solution of the system contains an extra term, an additional price imposed on the saturated zones. We show that this price corresponds to the pressure field from the models of incompressible Euler's equations à la Brenier. By this observation we manage to obtain a minimal regularity, which allows to write optimality conditions at the level of single agent trajectories and to define a weak notion of Nash equilibrium for our model.</abstract><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/15M1029849</doi><tpages>38</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-0129
ispartof SIAM journal on control and optimization, 2016-01, Vol.54 (5), p.2672-2709
issn 0363-0129
1095-7138
language eng
recordid cdi_hal_primary_oai_HAL_hal_01173947v2
source SIAM Journals Online
subjects Mathematics
Optimization and Control
title First Order Mean Field Games with Density Constraints: Pressure Equals Price
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A00%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First%20Order%20Mean%20Field%20Games%20with%20Density%20Constraints:%20Pressure%20Equals%20Price&rft.jtitle=SIAM%20journal%20on%20control%20and%20optimization&rft.au=Cardaliaguet,%20Pierre&rft.date=2016-01&rft.volume=54&rft.issue=5&rft.spage=2672&rft.epage=2709&rft.pages=2672-2709&rft.issn=0363-0129&rft.eissn=1095-7138&rft_id=info:doi/10.1137/15M1029849&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01173947v2%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true