First Order Mean Field Games with Density Constraints: Pressure Equals Price

In this paper we study Mean Field Game systems under density constraints as optimality conditions of two optimization problems in duality. A weak solution of the system contains an extra term, an additional price imposed on the saturated zones. We show that this price corresponds to the pressure fie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on control and optimization 2016-01, Vol.54 (5), p.2672-2709
Hauptverfasser: Cardaliaguet, Pierre, Mészáros, Alpár R., Santambrogio, Filippo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we study Mean Field Game systems under density constraints as optimality conditions of two optimization problems in duality. A weak solution of the system contains an extra term, an additional price imposed on the saturated zones. We show that this price corresponds to the pressure field from the models of incompressible Euler's equations à la Brenier. By this observation we manage to obtain a minimal regularity, which allows to write optimality conditions at the level of single agent trajectories and to define a weak notion of Nash equilibrium for our model.
ISSN:0363-0129
1095-7138
DOI:10.1137/15M1029849