Existence and consistency of Wasserstein barycenters

Based on the Fréchet mean, we define a notion of barycenter corresponding to a usual notion of statistical mean . We prove the existence of Wasserstein barycenters of random probabilities defined on a geodesic space ( E ,  d ). We also prove the consistency of this barycenter in a general setting, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Probability theory and related fields 2017-08, Vol.168 (3-4), p.901-917
Hauptverfasser: Le Gouic, Thibaut, Loubes, Jean-Michel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Based on the Fréchet mean, we define a notion of barycenter corresponding to a usual notion of statistical mean . We prove the existence of Wasserstein barycenters of random probabilities defined on a geodesic space ( E ,  d ). We also prove the consistency of this barycenter in a general setting, that includes taking barycenters of empirical versions of the probability measures or of a growing set of probability measures.
ISSN:0178-8051
1432-2064
DOI:10.1007/s00440-016-0727-z