Existence and consistency of Wasserstein barycenters
Based on the Fréchet mean, we define a notion of barycenter corresponding to a usual notion of statistical mean . We prove the existence of Wasserstein barycenters of random probabilities defined on a geodesic space ( E , d ). We also prove the consistency of this barycenter in a general setting, t...
Gespeichert in:
Veröffentlicht in: | Probability theory and related fields 2017-08, Vol.168 (3-4), p.901-917 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Based on the Fréchet mean, we define a notion of
barycenter
corresponding to a usual notion of
statistical mean
. We prove the existence of Wasserstein barycenters of random probabilities defined on a geodesic space (
E
,
d
). We also prove the consistency of this barycenter in a general setting, that includes taking barycenters of empirical versions of the probability measures or of a growing set of probability measures. |
---|---|
ISSN: | 0178-8051 1432-2064 |
DOI: | 10.1007/s00440-016-0727-z |