Algebraic graph transformations for formalizing ontology changes and evolving ontologies
An ontology represents a consensus on the representation of the concepts and axioms of a given domain. This consensus is often reached through an iterative process, each iteration consisting in modifying the current version of the consensus. Furthermore, frequent and continuous changes are also occu...
Gespeichert in:
Veröffentlicht in: | Knowledge-based systems 2015-01, Vol.73, p.212-226 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An ontology represents a consensus on the representation of the concepts and axioms of a given domain. This consensus is often reached through an iterative process, each iteration consisting in modifying the current version of the consensus. Furthermore, frequent and continuous changes are also occurring when the represented domain evolves or when new requirements have to be considered. Consequently, ontologies have to be adaptable to handle evolution, revision and refinement. However, this process is highly challenging as it is often difficult to understand all affected ontology parts when changes are performed. Thus, inconsistencies can occur in the ontology as the changes can introduce contradictory axioms. To address this issue, this paper presents a formal approach for evolving ontologies using Typed Graph Grammars. This method relies on the algebraic approach Simple PushOut (SPO) of graph transformations. It formalizes the ontology changes and proposes an a priori approach of inconsistencies resolution. The modified ontology does not need an explicit checking as an incorrect ontology version cannot actually be generated. To validate our proposal, an implementation is presented using the Attributed Graph Grammar (AGG) toolbox. |
---|---|
ISSN: | 0950-7051 1872-7409 |
DOI: | 10.1016/j.knosys.2014.10.007 |