Intrinsic finite element methods for the computation of fluxes for Poisson’s equation

In this paper we consider an intrinsic approach for the direct computation of the fluxes for problems in potential theory. We develop a general method for the derivation of intrinsic conforming and non-conforming finite element spaces and appropriate lifting operators for the evaluation of the right...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerische Mathematik 2016-03, Vol.132 (3), p.433-462
Hauptverfasser: Ciarlet, P. G., Ciarlet, P., Sauter, S. A., Simian, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we consider an intrinsic approach for the direct computation of the fluxes for problems in potential theory. We develop a general method for the derivation of intrinsic conforming and non-conforming finite element spaces and appropriate lifting operators for the evaluation of the right-hand side from abstract theoretical principles related to the second Strang Lemma. This intrinsic finite element method is analyzed and convergence with optimal order is proved.
ISSN:0029-599X
0945-3245
DOI:10.1007/s00211-015-0730-9