Leader–follower and leaderless consensus in networks of flexible-joint manipulators
This work presents some first results on the consensus for networks of nonlinear under-actuated mechanical systems without assuming that the gravity effects are negligible or locally pre-compensated. In particular, the study is focused on networks composed of nonidentical flexible-joint robot manipu...
Gespeichert in:
Veröffentlicht in: | European journal of control 2014-09, Vol.20 (5), p.249-258 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work presents some first results on the consensus for networks of nonlinear under-actuated mechanical systems without assuming that the gravity effects are negligible or locally pre-compensated. In particular, the study is focused on networks composed of nonidentical flexible-joint robot manipulators. Through a straightforward Lyapunov stability analysis, it is established that a simple control law provides a solution to the leader–follower consensus problem, provided that at least one follower has a direct access to the leader׳s position, and to the leaderless consensus problem. The network is modeled as an undirected graph and the network interconnection can have variable time-delays. The proposed controller consists of two different terms, one that dynamically compensates the robot gravity and another which ensures the desired consensus objective. This last term is a simple Proportional plus damping scheme. Simulations, using a network with ten manipulators, and experiments, with three 3 degrees-of-freedom manipulators, are provided to support the theoretical contributions of this work. |
---|---|
ISSN: | 0947-3580 1435-5671 |
DOI: | 10.1016/j.ejcon.2014.07.003 |