A new approach to the 2-regularity of the -abelian complexity of 2-automatic sequences
We prove that a sequence satisfying a certain symmetry property is 2-regular in the sense of Allouche and Shallit, i.e., the Z-module generated by its 2-kernel is finitely generated. We apply this theorem to develop a general approach for studying the-abelian complexity of 2-automatic sequences. In...
Gespeichert in:
Veröffentlicht in: | The Electronic journal of combinatorics 2015-01, Vol.22 (1) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that a sequence satisfying a certain symmetry property is 2-regular in the sense of Allouche and Shallit, i.e., the Z-module generated by its 2-kernel is finitely generated. We apply this theorem to develop a general approach for studying the-abelian complexity of 2-automatic sequences. In particular, we prove that the period-doubling word and the Thue–Morse word have 2-abelian complexity sequences that are 2-regular. Along the way, we also prove that the 2-block codings of these two words have 1-abelian complexity sequences that are 2-regular. |
---|---|
ISSN: | 1077-8926 |