Geometrizing the minimal representations of even orthogonal groups
Let X \mathrm {Bun}_{\mathrm {S}\mathbb{O}_{2n}} \mathrm {S}\mathbb{O}_{2n}. We give a geometric interpretation of the automorphic function f \mathrm {Bun}_{\mathrm {S}\mathbb{O}_{2n}} \mathcal {K}_H \mathrm {Bun}_{\mathrm {S}\mathbb{O}_{2n}} should be equal to the trace of the Frobenius of \mathcal...
Gespeichert in:
Veröffentlicht in: | Representation theory 2013-05, Vol.17 (10), p.263-325 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 325 |
---|---|
container_issue | 10 |
container_start_page | 263 |
container_title | Representation theory |
container_volume | 17 |
creator | Lafforgue, Vincent Lysenko, Sergey |
description | Let X \mathrm {Bun}_{\mathrm {S}\mathbb{O}_{2n}} \mathrm {S}\mathbb{O}_{2n}. We give a geometric interpretation of the automorphic function f \mathrm {Bun}_{\mathrm {S}\mathbb{O}_{2n}} \mathcal {K}_H \mathrm {Bun}_{\mathrm {S}\mathbb{O}_{2n}} should be equal to the trace of the Frobenius of \mathcal {K}_H on one hand, and on the geometric theta-lifting on the other hand. Our construction makes sense for more general simple algebraic groups, we formulate the corresponding conjectures. They could provide a geometric interpretation of some unipotent automorphic representations in the framework of the geometric Langlands program. |
doi_str_mv | 10.1090/S1088-4165-2013-00431-4 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01144678v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01144678v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-a280t-af26292856f1037c802b99b06e2978d0f90516420a120ff92cff1448883badb43</originalsourceid><addsrcrecordid>eNqNkE1PwzAMhiMEEmPwG-iVQ5idpk1yHBNsSJM4AOco3ZKtqG2qpEyCX0-7ookjJ1v2-_rjIeQW4R5BwewVQUrKMc8oA0wpAE-R8jMyOTXO_-SX5CrGDwBEkYkJeVhaX9sulN9ls0u6vU3qsilrUyXBtsFG23SmK30TE-8Se7BN4kO39zvf9JJd8J9tvCYXzlTR3vzGKXl_enxbrOj6Zfm8mK-pYRI6ahzLmWIyyx1CKjYSWKFUAbllSsgtOAUZ5pyBQQbOKbZxDjmXUqaF2RY8nZK7ce7eVLoN_ZHhS3tT6tV8rYda_xPnuZAH7LVi1G6CjzFYdzIg6AGbPmLTAxE9YNNHbHrYwkanqeO_TT-Pzm35</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Geometrizing the minimal representations of even orthogonal groups</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>American Mathematical Society Publications</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lafforgue, Vincent ; Lysenko, Sergey</creator><creatorcontrib>Lafforgue, Vincent ; Lysenko, Sergey</creatorcontrib><description>Let X \mathrm {Bun}_{\mathrm {S}\mathbb{O}_{2n}} \mathrm {S}\mathbb{O}_{2n}. We give a geometric interpretation of the automorphic function f \mathrm {Bun}_{\mathrm {S}\mathbb{O}_{2n}} \mathcal {K}_H \mathrm {Bun}_{\mathrm {S}\mathbb{O}_{2n}} should be equal to the trace of the Frobenius of \mathcal {K}_H on one hand, and on the geometric theta-lifting on the other hand. Our construction makes sense for more general simple algebraic groups, we formulate the corresponding conjectures. They could provide a geometric interpretation of some unipotent automorphic representations in the framework of the geometric Langlands program.</description><identifier>ISSN: 1088-4165</identifier><identifier>EISSN: 1088-4165</identifier><identifier>DOI: 10.1090/S1088-4165-2013-00431-4</identifier><language>eng</language><publisher>Amercian Mathematical Society</publisher><subject>Mathematics</subject><ispartof>Representation theory, 2013-05, Vol.17 (10), p.263-325</ispartof><rights>Copyright 2013, American Mathematical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a280t-af26292856f1037c802b99b06e2978d0f90516420a120ff92cff1448883badb43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/jourcgi/jour-getitem?pii=S1088-4165-2013-00431-4S1088-4165-2013-00431-4.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/jourcgi/jour-getitem?pii=S1088-4165-2013-00431-4$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,230,314,778,782,883,23307,23311,27907,27908,77587,77589,77597,77599</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01144678$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lafforgue, Vincent</creatorcontrib><creatorcontrib>Lysenko, Sergey</creatorcontrib><title>Geometrizing the minimal representations of even orthogonal groups</title><title>Representation theory</title><description>Let X \mathrm {Bun}_{\mathrm {S}\mathbb{O}_{2n}} \mathrm {S}\mathbb{O}_{2n}. We give a geometric interpretation of the automorphic function f \mathrm {Bun}_{\mathrm {S}\mathbb{O}_{2n}} \mathcal {K}_H \mathrm {Bun}_{\mathrm {S}\mathbb{O}_{2n}} should be equal to the trace of the Frobenius of \mathcal {K}_H on one hand, and on the geometric theta-lifting on the other hand. Our construction makes sense for more general simple algebraic groups, we formulate the corresponding conjectures. They could provide a geometric interpretation of some unipotent automorphic representations in the framework of the geometric Langlands program.</description><subject>Mathematics</subject><issn>1088-4165</issn><issn>1088-4165</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkE1PwzAMhiMEEmPwG-iVQ5idpk1yHBNsSJM4AOco3ZKtqG2qpEyCX0-7ookjJ1v2-_rjIeQW4R5BwewVQUrKMc8oA0wpAE-R8jMyOTXO_-SX5CrGDwBEkYkJeVhaX9sulN9ls0u6vU3qsilrUyXBtsFG23SmK30TE-8Se7BN4kO39zvf9JJd8J9tvCYXzlTR3vzGKXl_enxbrOj6Zfm8mK-pYRI6ahzLmWIyyx1CKjYSWKFUAbllSsgtOAUZ5pyBQQbOKbZxDjmXUqaF2RY8nZK7ce7eVLoN_ZHhS3tT6tV8rYda_xPnuZAH7LVi1G6CjzFYdzIg6AGbPmLTAxE9YNNHbHrYwkanqeO_TT-Pzm35</recordid><startdate>20130528</startdate><enddate>20130528</enddate><creator>Lafforgue, Vincent</creator><creator>Lysenko, Sergey</creator><general>Amercian Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20130528</creationdate><title>Geometrizing the minimal representations of even orthogonal groups</title><author>Lafforgue, Vincent ; Lysenko, Sergey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a280t-af26292856f1037c802b99b06e2978d0f90516420a120ff92cff1448883badb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lafforgue, Vincent</creatorcontrib><creatorcontrib>Lysenko, Sergey</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Representation theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lafforgue, Vincent</au><au>Lysenko, Sergey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometrizing the minimal representations of even orthogonal groups</atitle><jtitle>Representation theory</jtitle><date>2013-05-28</date><risdate>2013</risdate><volume>17</volume><issue>10</issue><spage>263</spage><epage>325</epage><pages>263-325</pages><issn>1088-4165</issn><eissn>1088-4165</eissn><abstract>Let X \mathrm {Bun}_{\mathrm {S}\mathbb{O}_{2n}} \mathrm {S}\mathbb{O}_{2n}. We give a geometric interpretation of the automorphic function f \mathrm {Bun}_{\mathrm {S}\mathbb{O}_{2n}} \mathcal {K}_H \mathrm {Bun}_{\mathrm {S}\mathbb{O}_{2n}} should be equal to the trace of the Frobenius of \mathcal {K}_H on one hand, and on the geometric theta-lifting on the other hand. Our construction makes sense for more general simple algebraic groups, we formulate the corresponding conjectures. They could provide a geometric interpretation of some unipotent automorphic representations in the framework of the geometric Langlands program.</abstract><pub>Amercian Mathematical Society</pub><doi>10.1090/S1088-4165-2013-00431-4</doi><tpages>63</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1088-4165 |
ispartof | Representation theory, 2013-05, Vol.17 (10), p.263-325 |
issn | 1088-4165 1088-4165 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01144678v1 |
source | American Mathematical Society Publications (Freely Accessible); American Mathematical Society Publications; EZB-FREE-00999 freely available EZB journals |
subjects | Mathematics |
title | Geometrizing the minimal representations of even orthogonal groups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T13%3A54%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometrizing%20the%20minimal%20representations%20of%20even%20orthogonal%20groups&rft.jtitle=Representation%20theory&rft.au=Lafforgue,%20Vincent&rft.date=2013-05-28&rft.volume=17&rft.issue=10&rft.spage=263&rft.epage=325&rft.pages=263-325&rft.issn=1088-4165&rft.eissn=1088-4165&rft_id=info:doi/10.1090/S1088-4165-2013-00431-4&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01144678v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |