Geometrizing the minimal representations of even orthogonal groups

Let X \mathrm {Bun}_{\mathrm {S}\mathbb{O}_{2n}} \mathrm {S}\mathbb{O}_{2n}. We give a geometric interpretation of the automorphic function f \mathrm {Bun}_{\mathrm {S}\mathbb{O}_{2n}} \mathcal {K}_H \mathrm {Bun}_{\mathrm {S}\mathbb{O}_{2n}} should be equal to the trace of the Frobenius of \mathcal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Representation theory 2013-05, Vol.17 (10), p.263-325
Hauptverfasser: Lafforgue, Vincent, Lysenko, Sergey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let X \mathrm {Bun}_{\mathrm {S}\mathbb{O}_{2n}} \mathrm {S}\mathbb{O}_{2n}. We give a geometric interpretation of the automorphic function f \mathrm {Bun}_{\mathrm {S}\mathbb{O}_{2n}} \mathcal {K}_H \mathrm {Bun}_{\mathrm {S}\mathbb{O}_{2n}} should be equal to the trace of the Frobenius of \mathcal {K}_H on one hand, and on the geometric theta-lifting on the other hand. Our construction makes sense for more general simple algebraic groups, we formulate the corresponding conjectures. They could provide a geometric interpretation of some unipotent automorphic representations in the framework of the geometric Langlands program.
ISSN:1088-4165
1088-4165
DOI:10.1090/S1088-4165-2013-00431-4