Geometrizing the minimal representations of even orthogonal groups
Let X \mathrm {Bun}_{\mathrm {S}\mathbb{O}_{2n}} \mathrm {S}\mathbb{O}_{2n}. We give a geometric interpretation of the automorphic function f \mathrm {Bun}_{\mathrm {S}\mathbb{O}_{2n}} \mathcal {K}_H \mathrm {Bun}_{\mathrm {S}\mathbb{O}_{2n}} should be equal to the trace of the Frobenius of \mathcal...
Gespeichert in:
Veröffentlicht in: | Representation theory 2013-05, Vol.17 (10), p.263-325 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let X \mathrm {Bun}_{\mathrm {S}\mathbb{O}_{2n}} \mathrm {S}\mathbb{O}_{2n}. We give a geometric interpretation of the automorphic function f \mathrm {Bun}_{\mathrm {S}\mathbb{O}_{2n}} \mathcal {K}_H \mathrm {Bun}_{\mathrm {S}\mathbb{O}_{2n}} should be equal to the trace of the Frobenius of \mathcal {K}_H on one hand, and on the geometric theta-lifting on the other hand. Our construction makes sense for more general simple algebraic groups, we formulate the corresponding conjectures. They could provide a geometric interpretation of some unipotent automorphic representations in the framework of the geometric Langlands program. |
---|---|
ISSN: | 1088-4165 1088-4165 |
DOI: | 10.1090/S1088-4165-2013-00431-4 |