Hyperuniform density fluctuations and diverging dynamic correlations in periodically driven colloidal suspensions

The emergence of particle irreversibility in periodically driven colloidal suspensions has been interpreted as resulting either from a nonequilibrium phase transition to an absorbing state or from the chaotic nature of particle trajectories. Using a simple model of a driven suspension, we show that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2015-04, Vol.114 (14), p.148301-148301, Article 148301
Hauptverfasser: Tjhung, Elsen, Berthier, Ludovic
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The emergence of particle irreversibility in periodically driven colloidal suspensions has been interpreted as resulting either from a nonequilibrium phase transition to an absorbing state or from the chaotic nature of particle trajectories. Using a simple model of a driven suspension, we show that a nonequilibrium phase transition is accompanied by hyperuniform static density fluctuations in the vicinity of the transition, where we also observe strong dynamic heterogeneities reminiscent of dynamics in glassy materials. We find that single particle dynamics becomes intermittent and strongly non-Fickian, and that collective dynamics becomes spatially correlated over diverging length scales. Our results suggest that the two theoretical scenarii can be experimentally discriminated using particle-resolved measurements of standard static and dynamic observables.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.114.148301