On disjoint hypercubes in Fibonacci cubes
The Fibonacci cube of dimension n, denoted as Γn, is the subgraph of n-cube Qn induced by vertices with no consecutive 1’s. We study the maximum number of disjoint subgraphs in Γn isomorphic to Qk, and denote this number by qk(n). We prove several recursive results for qk(n), in particular we prove...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2015-08, Vol.190-191, p.50-55 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 55 |
---|---|
container_issue | |
container_start_page | 50 |
container_title | Discrete Applied Mathematics |
container_volume | 190-191 |
creator | Gravier, Sylvain Mollard, Michel Špacapan, Simon Zemljič, Sara Sabrina |
description | The Fibonacci cube of dimension n, denoted as Γn, is the subgraph of n-cube Qn induced by vertices with no consecutive 1’s. We study the maximum number of disjoint subgraphs in Γn isomorphic to Qk, and denote this number by qk(n). We prove several recursive results for qk(n), in particular we prove that qk(n)=qk−1(n−2)+qk(n−3). We also prove a closed formula in which qk(n) is given in terms of Fibonacci numbers, and finally we give the generating function for the sequence {qk(n)}n=0∞. |
doi_str_mv | 10.1016/j.dam.2015.03.016 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01139094v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X15001651</els_id><sourcerecordid>oai_HAL_hal_01139094v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-811a94c02767d57a00b9a0c3d46109a20eed94ffd21ae5c121a0d8df694ce4ea3</originalsourceid><addsrcrecordid>eNp9kMFKw0AQhhdRsFYfwFuuPSTOJNtNgqdSrBUCvSh4W6a7E7qhTcpuLfTt3Vrx6GmYj_mGmV-IR4QMAdVTl1naZTngNIMii-RKjLAq81SVJV6LUSQqzbH6vBV3IXQAgLEbicmqT6wL3eD6Q7I57dmbrzWHxPXJwq2HnoxxyQ-6FzctbQM__Nax-Fi8vM-XabN6fZvPmtRIKQ9phUi1NJCXqrTTkgDWNYEprFQINeXAbGvZtjZH4qmJVxDYyrYqSiyZirGYXPZuaKv33u3In_RATi9njT4zQCxqqOUR4yxeZo0fQvDc_gkI-pyL7nTMRZ9z0VBEVUXn-eJwfOLo2OtgHPeGrfNsDtoO7h_7G5nVaTw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On disjoint hypercubes in Fibonacci cubes</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Gravier, Sylvain ; Mollard, Michel ; Špacapan, Simon ; Zemljič, Sara Sabrina</creator><creatorcontrib>Gravier, Sylvain ; Mollard, Michel ; Špacapan, Simon ; Zemljič, Sara Sabrina</creatorcontrib><description>The Fibonacci cube of dimension n, denoted as Γn, is the subgraph of n-cube Qn induced by vertices with no consecutive 1’s. We study the maximum number of disjoint subgraphs in Γn isomorphic to Qk, and denote this number by qk(n). We prove several recursive results for qk(n), in particular we prove that qk(n)=qk−1(n−2)+qk(n−3). We also prove a closed formula in which qk(n) is given in terms of Fibonacci numbers, and finally we give the generating function for the sequence {qk(n)}n=0∞.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2015.03.016</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Combinatorics ; Fibonacci cube ; Fibonacci numbers ; Mathematics</subject><ispartof>Discrete Applied Mathematics, 2015-08, Vol.190-191, p.50-55</ispartof><rights>2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-811a94c02767d57a00b9a0c3d46109a20eed94ffd21ae5c121a0d8df694ce4ea3</citedby><cites>FETCH-LOGICAL-c444t-811a94c02767d57a00b9a0c3d46109a20eed94ffd21ae5c121a0d8df694ce4ea3</cites><orcidid>0000-0003-2859-275X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0166218X15001651$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01139094$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gravier, Sylvain</creatorcontrib><creatorcontrib>Mollard, Michel</creatorcontrib><creatorcontrib>Špacapan, Simon</creatorcontrib><creatorcontrib>Zemljič, Sara Sabrina</creatorcontrib><title>On disjoint hypercubes in Fibonacci cubes</title><title>Discrete Applied Mathematics</title><description>The Fibonacci cube of dimension n, denoted as Γn, is the subgraph of n-cube Qn induced by vertices with no consecutive 1’s. We study the maximum number of disjoint subgraphs in Γn isomorphic to Qk, and denote this number by qk(n). We prove several recursive results for qk(n), in particular we prove that qk(n)=qk−1(n−2)+qk(n−3). We also prove a closed formula in which qk(n) is given in terms of Fibonacci numbers, and finally we give the generating function for the sequence {qk(n)}n=0∞.</description><subject>Combinatorics</subject><subject>Fibonacci cube</subject><subject>Fibonacci numbers</subject><subject>Mathematics</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKw0AQhhdRsFYfwFuuPSTOJNtNgqdSrBUCvSh4W6a7E7qhTcpuLfTt3Vrx6GmYj_mGmV-IR4QMAdVTl1naZTngNIMii-RKjLAq81SVJV6LUSQqzbH6vBV3IXQAgLEbicmqT6wL3eD6Q7I57dmbrzWHxPXJwq2HnoxxyQ-6FzctbQM__Nax-Fi8vM-XabN6fZvPmtRIKQ9phUi1NJCXqrTTkgDWNYEprFQINeXAbGvZtjZH4qmJVxDYyrYqSiyZirGYXPZuaKv33u3In_RATi9njT4zQCxqqOUR4yxeZo0fQvDc_gkI-pyL7nTMRZ9z0VBEVUXn-eJwfOLo2OtgHPeGrfNsDtoO7h_7G5nVaTw</recordid><startdate>20150820</startdate><enddate>20150820</enddate><creator>Gravier, Sylvain</creator><creator>Mollard, Michel</creator><creator>Špacapan, Simon</creator><creator>Zemljič, Sara Sabrina</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2859-275X</orcidid></search><sort><creationdate>20150820</creationdate><title>On disjoint hypercubes in Fibonacci cubes</title><author>Gravier, Sylvain ; Mollard, Michel ; Špacapan, Simon ; Zemljič, Sara Sabrina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-811a94c02767d57a00b9a0c3d46109a20eed94ffd21ae5c121a0d8df694ce4ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Combinatorics</topic><topic>Fibonacci cube</topic><topic>Fibonacci numbers</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gravier, Sylvain</creatorcontrib><creatorcontrib>Mollard, Michel</creatorcontrib><creatorcontrib>Špacapan, Simon</creatorcontrib><creatorcontrib>Zemljič, Sara Sabrina</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gravier, Sylvain</au><au>Mollard, Michel</au><au>Špacapan, Simon</au><au>Zemljič, Sara Sabrina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On disjoint hypercubes in Fibonacci cubes</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2015-08-20</date><risdate>2015</risdate><volume>190-191</volume><spage>50</spage><epage>55</epage><pages>50-55</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><abstract>The Fibonacci cube of dimension n, denoted as Γn, is the subgraph of n-cube Qn induced by vertices with no consecutive 1’s. We study the maximum number of disjoint subgraphs in Γn isomorphic to Qk, and denote this number by qk(n). We prove several recursive results for qk(n), in particular we prove that qk(n)=qk−1(n−2)+qk(n−3). We also prove a closed formula in which qk(n) is given in terms of Fibonacci numbers, and finally we give the generating function for the sequence {qk(n)}n=0∞.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2015.03.016</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2859-275X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-218X |
ispartof | Discrete Applied Mathematics, 2015-08, Vol.190-191, p.50-55 |
issn | 0166-218X 1872-6771 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01139094v1 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Combinatorics Fibonacci cube Fibonacci numbers Mathematics |
title | On disjoint hypercubes in Fibonacci cubes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T03%3A39%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20disjoint%20hypercubes%20in%20Fibonacci%20cubes&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Gravier,%20Sylvain&rft.date=2015-08-20&rft.volume=190-191&rft.spage=50&rft.epage=55&rft.pages=50-55&rft.issn=0166-218X&rft.eissn=1872-6771&rft_id=info:doi/10.1016/j.dam.2015.03.016&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01139094v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0166218X15001651&rfr_iscdi=true |