On disjoint hypercubes in Fibonacci cubes

The Fibonacci cube of dimension n, denoted as Γn, is the subgraph of n-cube Qn induced by vertices with no consecutive 1’s. We study the maximum number of disjoint subgraphs in Γn isomorphic to Qk, and denote this number by qk(n). We prove several recursive results for qk(n), in particular we prove...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2015-08, Vol.190-191, p.50-55
Hauptverfasser: Gravier, Sylvain, Mollard, Michel, Špacapan, Simon, Zemljič, Sara Sabrina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Fibonacci cube of dimension n, denoted as Γn, is the subgraph of n-cube Qn induced by vertices with no consecutive 1’s. We study the maximum number of disjoint subgraphs in Γn isomorphic to Qk, and denote this number by qk(n). We prove several recursive results for qk(n), in particular we prove that qk(n)=qk−1(n−2)+qk(n−3). We also prove a closed formula in which qk(n) is given in terms of Fibonacci numbers, and finally we give the generating function for the sequence {qk(n)}n=0∞.
ISSN:0166-218X
1872-6771
DOI:10.1016/j.dam.2015.03.016