Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements

In most near‐infrared atmospheric windows, absorption of solar radiation is dominated by the water vapor self‐continuum, and yet there is a paucity of measurements in these windows. We report new laboratory measurements of the self‐continuum absorption at temperatures between 293 and 472 K and press...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research 2011-08, Vol.116 (D16), p.n/a, Article D16305
Hauptverfasser: Ptashnik, Igor V., McPheat, Robert A., Shine, Keith P., Smith, Kevin M., Williams, R. Gary
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In most near‐infrared atmospheric windows, absorption of solar radiation is dominated by the water vapor self‐continuum, and yet there is a paucity of measurements in these windows. We report new laboratory measurements of the self‐continuum absorption at temperatures between 293 and 472 K and pressures from 0.015 to 5 atm in four near‐infrared windows between 1 and 4 μm (10000–2500 cm−1); the measurements are made over a wider range of wavenumbers, temperatures, and pressures than any previous measurements. They show that the self‐continuum in these windows is typically one order of magnitude stronger than given in representations of the continuum widely used in climate and weather prediction models. These results are also not consistent with current theories attributing the self‐continuum within windows to the far wings of strong spectral lines in the nearby water vapor absorption bands; we suggest that they are more consistent with water dimers being the major contributor to the continuum. The calculated global average clear‐sky atmospheric absorption of solar radiation is increased by ∼0.75 W/m2 (which is about 1% of the total clear‐sky absorption) by using these new measurements as compared to calculations with the MT_CKD‐2.5 self‐continuum model. Key Points Water vapor self‐continuum is derived from lab measurements in near‐IR windows The measured continuum is dramatically stronger than MT_CKD or far‐wing models This result changes calculated clear‐sky absorption of solar radiation by 1%–2%
ISSN:0148-0227
2169-897X
2156-2202
2169-8996
DOI:10.1029/2011JD015603