Proper connection of graphs
An edge-colored graph G is k-proper connected if every pair of vertices is connected by k internally pairwise vertex-disjoint proper colored paths. The k-proper connection number of a connected graph G, denoted by pck(G), is the smallest number of colors that are needed to color the edges of G in or...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2012-09, Vol.312 (17), p.2550-2560 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An edge-colored graph G is k-proper connected if every pair of vertices is connected by k internally pairwise vertex-disjoint proper colored paths. The k-proper connection number of a connected graph G, denoted by pck(G), is the smallest number of colors that are needed to color the edges of G in order to make it k-proper connected. In this paper we prove several upper bounds for pck(G). We state some conjectures for general and bipartite graphs, and we prove them for the case when k=1. In particular, we prove a variety of conditions on G which imply pc1(G)=2. |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2011.09.003 |