Proper connection of graphs

An edge-colored graph G is k-proper connected if every pair of vertices is connected by k internally pairwise vertex-disjoint proper colored paths. The k-proper connection number of a connected graph G, denoted by pck(G), is the smallest number of colors that are needed to color the edges of G in or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics 2012-09, Vol.312 (17), p.2550-2560
Hauptverfasser: Borozan, Valentin, Fujita, Shinya, Gerek, Aydin, Magnant, Colton, Manoussakis, Yannis, Montero, Leandro, Tuza, Zsolt
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An edge-colored graph G is k-proper connected if every pair of vertices is connected by k internally pairwise vertex-disjoint proper colored paths. The k-proper connection number of a connected graph G, denoted by pck(G), is the smallest number of colors that are needed to color the edges of G in order to make it k-proper connected. In this paper we prove several upper bounds for pck(G). We state some conjectures for general and bipartite graphs, and we prove them for the case when k=1. In particular, we prove a variety of conditions on G which imply pc1(G)=2.
ISSN:0012-365X
1872-681X
DOI:10.1016/j.disc.2011.09.003