Numerical solution of the Optimal Transportation problem using the Monge–Ampère equation

A numerical method for the solution of the elliptic Monge–Ampère Partial Differential Equation, with boundary conditions corresponding to the Optimal Transportation (OT) problem, is presented. A local representation of the OT boundary conditions is combined with a finite difference scheme for the Mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2014-03, Vol.260 (1), p.107-126
Hauptverfasser: Benamou, Jean-David, Froese, Brittany D., Oberman, Adam M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A numerical method for the solution of the elliptic Monge–Ampère Partial Differential Equation, with boundary conditions corresponding to the Optimal Transportation (OT) problem, is presented. A local representation of the OT boundary conditions is combined with a finite difference scheme for the Monge–Ampère equation. Newtonʼs method is implemented, leading to a fast solver, comparable to solving the Laplace equation on the same grid several times. Theoretical justification for the method is given by a convergence proof in the companion paper [4]. Solutions are computed with densities supported on non-convex and disconnected domains. Computational examples demonstrate robust performance on singular solutions and fast computational times.
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2013.12.015