On finite rank Hankel operators

For self-adjoint Hankel operators of finite rank, we find an explicit formula for the total multiplicity of their negative and positive spectra. We also show that very strong perturbations, for example, a perturbation by the Carleman operator, do not change the total number of negative eigenvalues o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional analysis 2015-04, Vol.268 (7), p.1808-1839
1. Verfasser: Yafaev, D.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For self-adjoint Hankel operators of finite rank, we find an explicit formula for the total multiplicity of their negative and positive spectra. We also show that very strong perturbations, for example, a perturbation by the Carleman operator, do not change the total number of negative eigenvalues of finite rank Hankel operators. As a by-product of our considerations, we obtain an explicit description of the group of unitary automorphisms of all bounded Hankel operators.
ISSN:0022-1236
1096-0783
DOI:10.1016/j.jfa.2014.12.005