On finite rank Hankel operators
For self-adjoint Hankel operators of finite rank, we find an explicit formula for the total multiplicity of their negative and positive spectra. We also show that very strong perturbations, for example, a perturbation by the Carleman operator, do not change the total number of negative eigenvalues o...
Gespeichert in:
Veröffentlicht in: | Journal of functional analysis 2015-04, Vol.268 (7), p.1808-1839 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For self-adjoint Hankel operators of finite rank, we find an explicit formula for the total multiplicity of their negative and positive spectra. We also show that very strong perturbations, for example, a perturbation by the Carleman operator, do not change the total number of negative eigenvalues of finite rank Hankel operators. As a by-product of our considerations, we obtain an explicit description of the group of unitary automorphisms of all bounded Hankel operators. |
---|---|
ISSN: | 0022-1236 1096-0783 |
DOI: | 10.1016/j.jfa.2014.12.005 |