On fair network cache allocation to content providers

In-network caching is an important solution for content offloading from content service providers. However despite a rather high maturation in the definition of caching techniques, minor attention has been given to the strategic interaction among the multiple content providers. Situations involving...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer networks (Amsterdam, Netherlands : 1999) Netherlands : 1999), 2016-07, Vol.103, p.129-142
Hauptverfasser: Hoteit, Sahar, El Chamie, Mahmoud, Saucez, Damien, Secci, Stefano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In-network caching is an important solution for content offloading from content service providers. However despite a rather high maturation in the definition of caching techniques, minor attention has been given to the strategic interaction among the multiple content providers. Situations involving multiple content providers (CPs) and one Internet Service Provider (ISP) having to give them access to its caches are prone to high cache contention, in particular at the appealing topology cross-points. While available cache contention situations from the literature were solved by considering each storage as one autonomous and self managed cache, we propose in this paper to address this contention situation by segmenting the storage on a per-content provider basis (e.g., each CP receives a portion of the storage space depending on its storage demand). We propose a resource allocation and pricing framework to support the network cache provider in the cache allocation to multiple CPs, for situations where CPs have heterogeneous sets of files and untruthful demands need to be avoided. As cache imputations to CPs need to be fair and robust against overclaiming, we evaluate common proportional and max–min fairness (PF, MMF) allocation rules, as well as two coalitional game rules, the Nucleolus and the Shapley value. When comparing our cache allocation algorithm for the different allocation rules with the naive least-recently-used-based cache allocation approach, we find that the latter provides proportional fairness. Moreover, the game-theoretic rules outperform in terms of content access latency the naive cache allocation approach as well as PF and MMF approaches, while sitting in between PF and MMF in terms of fairness. Furthermore, we show that our pricing scheme encourages the CPs to declare their truthful demands by maximizing their utilities for real declarations.
ISSN:1389-1286
1872-7069
DOI:10.1016/j.comnet.2016.04.006