Bayesian sparse Fourier representation of off-grid targets with application to experimental radar data
The problem considered is the estimation of a finite number of cisoids embedded in white noise, using a sparse signal representation (SSR) approach, a problem which is relevant in many radar applications. Many SSR algorithms have been developed in order to solve this problem, but they usually are se...
Gespeichert in:
Veröffentlicht in: | Signal processing 2015-06, Vol.111, p.261-273 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The problem considered is the estimation of a finite number of cisoids embedded in white noise, using a sparse signal representation (SSR) approach, a problem which is relevant in many radar applications. Many SSR algorithms have been developed in order to solve this problem, but they usually are sensitive to grid mismatch. In this paper, two Bayesian algorithms are presented, which are robust towards grid mismatch: a first method uses a Fourier dictionary directly parametrized by the grid mismatch while the second one employs a first-order Taylor approximation to relate linearly the grid mismatch and the sparse vector. The main strength of these algorithms lies in the use of a mixed-type distribution which decorrelates sparsity level and target power. Besides, both methods are implemented through a Monte-Carlo Markov chain algorithm. They are successfully evaluated on synthetic and experimental radar data, and compared to a benchmark algorithm. |
---|---|
ISSN: | 0165-1684 1872-7557 |
DOI: | 10.1016/j.sigpro.2014.12.024 |