Bayesian networks for incomplete data analysis in form processing

In this paper, we study Bayesian network (BN) for form identification based on partially filled fields. It uses electronic ink-tracing files without having any information about form structure. Given a form format, the ink-tracing files are used to build the BN by providing the possible relationship...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of machine learning and cybernetics 2015-06, Vol.6 (3), p.347-363
Hauptverfasser: Philippot, Emilie, Santosh, K. C., Belaïd, Abdel, Belaïd, Yolande
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study Bayesian network (BN) for form identification based on partially filled fields. It uses electronic ink-tracing files without having any information about form structure. Given a form format, the ink-tracing files are used to build the BN by providing the possible relationships between corresponding fields using conditional probabilities, that goes from individual fields up to the complete model construction. To simplify the BN, we sub-divide a single form into three different areas: header, body and footer, and integrate them together, where we study three fundamental BN learning algorithms: Naive, Peter & Clark and maximum weighted spanning tree. Under this framework, we validate it with a real-world industrial problem i.e., electronic note-taking in form processing. The approach provides satisfactory results, attesting the interest of BN for exploiting the incomplete form analysis problems, in particular.
ISSN:1868-8071
1868-808X
DOI:10.1007/s13042-014-0234-4