Low-order reconstruction operators on polyhedral meshes: application to compatible discrete operator schemes

We study low-order reconstruction operators on polyhedral meshes, providing a unified framework for degrees of freedom attached to vertices, edges, faces, and cells. We present two equivalent sets of design properties and draw links with the literature. In particular, the two-level construction base...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer aided geometric design 2015-05, Vol.35-36, p.27-41
Hauptverfasser: Bonelle, Jérôme, Di Pietro, Daniele A., Ern, Alexandre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study low-order reconstruction operators on polyhedral meshes, providing a unified framework for degrees of freedom attached to vertices, edges, faces, and cells. We present two equivalent sets of design properties and draw links with the literature. In particular, the two-level construction based on a P0-consistent and a stabilization part provides a systematic way of designing these operators. We present a simple example of piecewise constant reconstruction in each mesh cell, relying on geometric identities to fulfill the design properties on polyhedral meshes. Finally, we use these reconstruction operators to define a Hodge inner product and build Compatible Discrete Operator schemes, and we test the influence of the reconstruction operators in terms of accuracy and computational efficiency on an anisotropic diffusion problem.
ISSN:0167-8396
1879-2332
DOI:10.1016/j.cagd.2015.03.015