Optimal Stopping for Dynamic Risk Measures with Jumps and Obstacle Problems
We study the optimal stopping problem for a monotonous dynamic risk measure induced by a Backward Stochastic Differential Equation with jumps in the Markovian case. We show that the value function is a viscosity solution of an obstacle problem for a partial integro-differential variational inequalit...
Gespeichert in:
Veröffentlicht in: | Journal of optimization theory and applications 2015-10, Vol.167 (1), p.219-242 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the optimal stopping problem for a monotonous dynamic risk measure induced by a Backward Stochastic Differential Equation with jumps in the Markovian case. We show that the value function is a viscosity solution of an obstacle problem for a partial integro-differential variational inequality and we provide an uniqueness result for this obstacle problem. |
---|---|
ISSN: | 0022-3239 1573-2878 |
DOI: | 10.1007/s10957-014-0635-2 |