Optimal Stopping for Dynamic Risk Measures with Jumps and Obstacle Problems

We study the optimal stopping problem for a monotonous dynamic risk measure induced by a Backward Stochastic Differential Equation with jumps in the Markovian case. We show that the value function is a viscosity solution of an obstacle problem for a partial integro-differential variational inequalit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 2015-10, Vol.167 (1), p.219-242
Hauptverfasser: Dumitrescu, Roxana, Quenez, Marie-Claire, Sulem, Agnès
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the optimal stopping problem for a monotonous dynamic risk measure induced by a Backward Stochastic Differential Equation with jumps in the Markovian case. We show that the value function is a viscosity solution of an obstacle problem for a partial integro-differential variational inequality and we provide an uniqueness result for this obstacle problem.
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-014-0635-2