Uniqueness results for inverse Robin problems with bounded coefficient
In this paper we address the uniqueness issue in the classical Robin inverse problem on a Lipschitz domain Ω⊂Rn, with L∞ Robin coefficient, L2 Neumann data and conductivity of class W1,r(Ω), r>n. We show that uniqueness of the Robin coefficient on a subpart of the boundary, given Cauchy data on t...
Gespeichert in:
Veröffentlicht in: | Journal of functional analysis 2016-04, Vol.270 (7), p.2508-2542 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we address the uniqueness issue in the classical Robin inverse problem on a Lipschitz domain Ω⊂Rn, with L∞ Robin coefficient, L2 Neumann data and conductivity of class W1,r(Ω), r>n. We show that uniqueness of the Robin coefficient on a subpart of the boundary, given Cauchy data on the complementary part, does hold in dimension n=2 but needs not hold in higher dimension. We also raise on open issue on harmonic gradients which is of interest in this context. |
---|---|
ISSN: | 0022-1236 1096-0783 |
DOI: | 10.1016/j.jfa.2016.01.011 |