Uniqueness results for inverse Robin problems with bounded coefficient

In this paper we address the uniqueness issue in the classical Robin inverse problem on a Lipschitz domain Ω⊂Rn, with L∞ Robin coefficient, L2 Neumann data and conductivity of class W1,r(Ω), r>n. We show that uniqueness of the Robin coefficient on a subpart of the boundary, given Cauchy data on t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional analysis 2016-04, Vol.270 (7), p.2508-2542
Hauptverfasser: Baratchart, Laurent, Bourgeois, Laurent, Leblond, Juliette
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we address the uniqueness issue in the classical Robin inverse problem on a Lipschitz domain Ω⊂Rn, with L∞ Robin coefficient, L2 Neumann data and conductivity of class W1,r(Ω), r>n. We show that uniqueness of the Robin coefficient on a subpart of the boundary, given Cauchy data on the complementary part, does hold in dimension n=2 but needs not hold in higher dimension. We also raise on open issue on harmonic gradients which is of interest in this context.
ISSN:0022-1236
1096-0783
DOI:10.1016/j.jfa.2016.01.011