On multiplicatively independent bases in cyclotomic number fields

Recently the authors [ 12 ] showed that the algebraic integers of the form - m + ζ k are bases of a canonical number system of Z [ ζ k ] provided m ≧ ϕ ( k ) + 1 , where ζ k denotes a k -th primitive root of unity and ϕ is Euler’s totient function. In this paper we are interested in the questions wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Hungarica 2015-06, Vol.146 (1), p.224-239
Hauptverfasser: Madritsch, M. G., Ziegler, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently the authors [ 12 ] showed that the algebraic integers of the form - m + ζ k are bases of a canonical number system of Z [ ζ k ] provided m ≧ ϕ ( k ) + 1 , where ζ k denotes a k -th primitive root of unity and ϕ is Euler’s totient function. In this paper we are interested in the questions whether two bases - m + ζ k and - n + ζ k are multiplicatively independent. We show the multiplicative independence in case that 0 
ISSN:0236-5294
1588-2632
DOI:10.1007/s10474-015-0500-2