On multiplicatively independent bases in cyclotomic number fields
Recently the authors [ 12 ] showed that the algebraic integers of the form - m + ζ k are bases of a canonical number system of Z [ ζ k ] provided m ≧ ϕ ( k ) + 1 , where ζ k denotes a k -th primitive root of unity and ϕ is Euler’s totient function. In this paper we are interested in the questions wh...
Gespeichert in:
Veröffentlicht in: | Acta mathematica Hungarica 2015-06, Vol.146 (1), p.224-239 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recently the authors [
12
] showed that the algebraic integers of the form
-
m
+
ζ
k
are bases of a canonical number system of
Z
[
ζ
k
]
provided
m
≧
ϕ
(
k
)
+
1
, where
ζ
k
denotes a
k
-th primitive root of unity and
ϕ
is Euler’s totient function. In this paper we are interested in the questions whether two bases
-
m
+
ζ
k
and
-
n
+
ζ
k
are multiplicatively independent. We show the multiplicative independence in case that 0 |
---|---|
ISSN: | 0236-5294 1588-2632 |
DOI: | 10.1007/s10474-015-0500-2 |