Neumann problems for nonlinear elliptic equations with L 1 data
In the present paper we prove existence results for solutions to nonlinear elliptic Neumann problems whose prototype is \begin{equation*} \begin{cases} -\Delta_{p} u -\text{div} (c(x)|u|^{p-2}u)) =f & \text{in}\ \Omega, \\ \left( |\nabla u|^{p-2}\nabla u+ c(x)|u|^{p-2}u \right)\cdot\underline n=...
Gespeichert in:
Veröffentlicht in: | Journal of Differential Equations 2015-08, Vol.259 (3), p.898-924 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present paper we prove existence results for solutions to nonlinear elliptic Neumann problems whose prototype is \begin{equation*} \begin{cases} -\Delta_{p} u -\text{div} (c(x)|u|^{p-2}u)) =f & \text{in}\ \Omega, \\ \left( |\nabla u|^{p-2}\nabla u+ c(x)|u|^{p-2}u \right)\cdot\underline n=0 & \text{on}\ \partial \Omega \,, \end{cases} \end{equation*} when $f$ is just a summable function. Our approach allows also to deduce a stability result for renormalized solutions and an existence result for operator with a zero order term. |
---|---|
ISSN: | 0022-0396 1090-2732 |
DOI: | 10.1016/j.jde.2015.02.031 |