Neumann problems for nonlinear elliptic equations with L 1 data

In the present paper we prove existence results for solutions to nonlinear elliptic Neumann problems whose prototype is \begin{equation*} \begin{cases} -\Delta_{p} u -\text{div} (c(x)|u|^{p-2}u)) =f & \text{in}\ \Omega, \\ \left( |\nabla u|^{p-2}\nabla u+ c(x)|u|^{p-2}u \right)\cdot\underline n=...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Differential Equations 2015-08, Vol.259 (3), p.898-924
Hauptverfasser: Betta, M.F., Guibé, O., Mercaldo, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present paper we prove existence results for solutions to nonlinear elliptic Neumann problems whose prototype is \begin{equation*} \begin{cases} -\Delta_{p} u -\text{div} (c(x)|u|^{p-2}u)) =f & \text{in}\ \Omega, \\ \left( |\nabla u|^{p-2}\nabla u+ c(x)|u|^{p-2}u \right)\cdot\underline n=0 & \text{on}\ \partial \Omega \,, \end{cases} \end{equation*} when $f$ is just a summable function. Our approach allows also to deduce a stability result for renormalized solutions and an existence result for operator with a zero order term.
ISSN:0022-0396
1090-2732
DOI:10.1016/j.jde.2015.02.031